456 research outputs found

    Elastic anomaly of heavy fermion systems in a crystalline field

    Full text link
    An elastic anomaly, observed in the heavy fermi liquid state of Ce alloys (for example, CeCu6_6 and CeTe), is analyzed by using the infinite-UU Anderson lattice model. The four atomic energy levels are assumed for f-electrons. Two of them are mutually degenerate. A small crystalline splitting 2Δ2\Delta is assumed between two energy levels. The fourfold degenerate conduction bands are also considered in the model. We solve the model using the mean field approximation to slave bosons, changing the Fermi energy in order to keep the total electron number constant. The nonzero value of the mean field of the slave bosons persists over the temperatures much higher than the Kondo temperature. This is the effect of the constant electron number. Next, the linear susceptibility with respect to Δ\Delta is calculated in order to obtain the renomalized elastic constant. The resulting temperature dependence of the constant shows the downward dip. We point out the relation of our finding with the experimental data.Comment: submitted to J. Phys.: Condens. Matter, please request figure copies to [email protected]

    Optical absorption spectra of A6C60 and A6C70: Reduction of effective Coulomb interactions in Frenkel excitons

    Full text link
    We theoretically investigate optical absorption spectra of \soc^{6-} and \rug^{6-}, and discuss relations with the optical properties of alkali metal doped fullerides A_6\soc and A_6\rug. This is a valid approach for systems where Frenkel exciton effects are dominant. We use a tight binding model with long ranged Coulomb interactions and bond disorder. Optical spectra are obtained by the Hartree-Fock approximation and the configuration interaction method. We find that the Coulomb interaction parameters, which are relevant to the optical spectra of A_6\soc (A_6\rug) in order to explain the excitation energies and relative oscillator strengths of absorption peaks, are almost the half of those of the neutral \soc (\rug). The reduction of the effective Coulomb interactions is concluded for the heavily doped case of \soc and \rug. This finding is closely related with the experimental fact that dielectric constants of fullerides which are maximumly doped with alkali metals become about twice as large as those of the neutral systems.Comment: Note: A full preprint with figures should be requested to the author. It will be sent by air-mail.; E-mail: [email protected]

    Quantum Lattice Fluctuations and Luminescence in C_60

    Full text link
    We consider luminescence in photo-excited neutral C_60 using the Su-Schrieffer-Heeger model applied to a single C_60 molecule. To calculate the luminescence we use a collective coordinate method where our collective coordinate resembles the displacement of the carbon atoms of the Hg(8) phonon mode and extrapolates between the ground state "dimerisation" and the exciton polaron. There is good agreement for the existing luminescence peak spacing and fair agreement for the relative intensity. We predict the existence of further peaks not yet resolved in experiment. PACS Numbers : 78.65.Hc, 74.70.Kn, 36.90+

    Optical excitations in hexagonal nanonetwork materials

    Full text link
    Optical excitations in hexagonal nanonetwork materials, for example, Boron-Nitride (BN) sheets and nanotubes, are investigated theoretically. The bonding of BN systems is positively polarized at the B site, and is negatively polarized at the N site. There is a permanent electric dipole moment along the BN bond, whose direction is from the B site to the N site. When the exciton hopping integral is restricted to the nearest neighbors, the flat band of the exciton appears at the lowest energy. The higher optical excitations have excitation bands similar to the electronic bands of graphene planes and carbon nanotubes. The symmetry of the flat exciton band is optically forbidden, indicating that the excitons related to this band will show quite long lifetime which will cause strong luminescence properties.Comment: 4 pages; 3 figures; proceedings of "XVIth International Winterschool on Electronic Properties of Novel Materials (IWEPNM2002)
    • …
    corecore