283 research outputs found

    Radiative pion capture by a nucleon

    Get PDF
    The differential cross sections for π−p→γn\pi^- p \to \gamma n and π+n→γp\pi^+ n \to \gamma p are computed up to O(p3)O(p^3) in heavy baryon chiral perturbation theory (HBChPT). The expressions at O(p)O(p) and O(p2)O(p^2) have no free parameters. There are three unknown parameters at O(p3)O(p^3), low energy constants of the HBChPT Lagrangian, which are determined by fitting to experimental data. Two acceptable fits are obtained, which can be separated by comparing with earlier dispersion relation calculations of the inverse process. Expressions for the multipoles, with emphasis on the p-wave multipoles, are obtained and evaluated at threshold. Generally the results obtained from the best of the two fits are in good agreement with the dispersion relation predictions.Comment: 24 pages, Latex, using RevTe

    Radiative decays of decuplet hyperons

    Get PDF
    We calculate the radiative decay widths of decuplet hyperons in a chiral constituent quark model including electromagnetic exchange currents between quarks. Exchange currents contribute significantly to the E2 transition amplitude, while they largely cancel for the M1 transition amplitude. Strangeness suppression of the radiative hyperon decays is found to be weakened by exchange currents. Differences and similarities between our results and other recent model predictions are discussed.Comment: 11 pages, 1 eps figure, revtex, accepted for publication in Phys. Rev.

    Low-Energy Compton Scattering of Polarized Photons on Polarized Nucleons

    Get PDF
    The general structure of the cross section of ÎłN\gamma N scattering with polarized photon and/or nucleon in initial and/or final state is systematically described and exposed through invariant amplitudes. A low-energy expansion of the cross section up to and including terms of order ω4\omega^4 is given which involves ten structure parameters of the nucleon (dipole, quadrupole, dispersion, and spin polarizabilities). Their physical meaning is discussed in detail. Using fixed-t dispersion relations, predictions for these parameters are obtained and compared with results of chiral perturbation theory. It is emphasized that Compton scattering experiments at large angles can fix the most uncertain of these structure parameters. Predictions for the cross section and double-polarization asymmetries are given and the convergence of the expansion is investigated. The feasibility of the experimental determination of some of the struture parameters is discussed.Comment: 41 pages of text, 9 figures; minor revisions prior to publication in Phys. Rev.

    Energy Dependence of the Delta Resonance: Chiral Dynamics in Action

    Full text link
    There is an important connection between the low energy theorems of QCD and the energy dependence of the Delta resonance in pi-N scattering, as well as the closely related gamma^{*} N -> pi N reaction. The resonance shape is due not only to the strong pi-N interaction in the p wave but the small interaction in the s wave; the latter is due to spontaneous chiral symmetry breaking in QCD (i.e. the Nambu-Goldstone nature of the pion). A brief overview of experimental tests of chiral perturbation theory and chiral based models is presentedComment: 11 pages, 6 figures, Festschrift for S.N. yan

    On the extraction of electromagnetic properties of the Delta(1232) excitation from pion photoproduction

    Full text link
    Several methods for the treatment of pion photoproduction in the region of the Delta(1232) resonance are discussed, in particular the effective Lagrangian approach and the speed plot analysis are compared to a dynamical treatment. As a main topic, we discuss the extraction of the genuine resonance parts of the magnetic dipole and electric quadrupole multipoles of the electromagnetic excitation of the resonance. To this end, we try to relate the various values for the ratio R_{EM} of the E2 to M1 multipole excitation strengths for the Delta(1232) resonance as extracted by the different methods to corresponding ratios of a dynamical model. Moreover, it is confirmed that all methods for extracting resonance properties suffer from an unitary ambiguity which is due to some phenomenological contributions entering the models.Comment: 22 pages revtex including 7 postscript figure

    Precision calculation of Îłd→π+nn\gamma d\to \pi^+ nn within chiral perturbation theory

    Full text link
    The reaction Îłd→π+nn\gamma d\to \pi^+ nn is calculated up to order χ5/2\chi^{5/2} in chiral perturbation theory, where χ\chi denotes the ratio of the pion to the nucleon mass. Special emphasis is put on the role of nucleon--recoil corrections that are the source of contributions with fractional power in χ\chi. Using the known near threshold production amplitude for Îłp→π+n\gamma p\to \pi^+ n as the only input, the total cross section for Îłd→π+nn\gamma d\to \pi^+ nn is described very well. A conservative estimate suggests that the theoretical uncertainty for the transition operator amounts to 3 % for the computed amplitude near threshold.Comment: 28 page

    Higher Order Polarizabilities of the Proton

    Get PDF
    Compton scattering results are used to probe proton structure via measurement of higher order polarizabilities. Values for αE2p,ÎČE2p,αEÎœp,\alpha_{E2}^p,\beta_{E2}^p,\alpha_{E\nu}^p, ÎČEÎœp\beta_{E\nu}^p determined via dispersion relations are compared to predictions based upon chiral symmetry and from the constituent quark model. Extensions to spin-polarizabilities are also discussed.Comment: 18 pages, revised version with one reference adde

    Sum rule for the backward spin polarizability of the nucleon from a backward dispersion relation

    Get PDF
    A new sum rule for ÎłÏ€\gamma_\pi, the backward spin polarizability of the nucleon, is derived from a backward-angle dispersion relation. Taking into account single- and multi-pion photoproduction in the s-channel up to the energy 1.5 GeV and resonances in the t-channel with mass below 1.5 GeV, it is found for the proton and neutron that [ÎłÏ€]p[\gamma_\pi]_p = -39.5 +/- 2.4 and [ÎłÏ€]n[\gamma_\pi]_n = 52.5 +/- 2.4, respectively, in units of 10^{-4} fm^4.Comment: 10 pages, 1 figure, revtex. Submitted to Phys. Lett.

    The P_33(1232) resonance contribution into the amplitudes M_{1+}^{3/2},E_{1+}^{3/2},S_{1+}^{3/2} from an analysis of the p(e,e'p)\pi^0 data at Q^2 = 2.8, 3.2, and 4 (GeV/c)^2 within dispersion relation approach

    Get PDF
    Within the fixed-t dispersion relation approach we have analysed the TJNAF and DESY data on the exclusive p(e,e'p)\pi^0 reaction in order to find the P_{33}(1232) resonance contribution into the multipole amplitudes M_{1+}^{3/2},E_{1+}^{3/2},S_{1+}^{3/2}. As an input for the resonance and nonresonance contributions into these amplitudes the earlier obtained solutions of the integral equations which follow from dispersion relations are used. The obtained values of the ratio E2/M1 for the \gamma^* N \to P_{33}(1232) transition are: 0.039\pm 0.029, 0.121\pm 0.032, 0.04\pm 0.031 for Q^2= 2.8, 3.2, and 4 (GeV/c)^2, respectively. The comparison with the data at low Q^2 shows that there is no evidence for the presence of the visible pQCD contribution into the transition \gamma N \to P_{33}(1232) at Q^2=3-4 GeV^2. The ratio S_{1+}^{3/2}/M_{1+}^{3/2} for the resonance parts of multipoles is: -0.049\pm 0.029, -0.099\pm 0.041, -0.085\pm 0.021 for Q^2= 2.8, 3.2, and 4 (GeV/c)^2, respectively. Our results for the transverse form factor G_T(Q^2) of the \gamma^* N \to P_{33}(1232) transition are lower than the values obtained from the inclusive data. With increasing Q^2, Q^4G_T(Q^2) decreases, so there is no evidence for the presence of the pQCD contribution here too

    Problems with Extraction of the Nucleon to Delta(1232) Photonic Amplitudes

    Get PDF
    We investigate the model dependence and the importance of choice of database in extracting the {\it physical} nucleon-Delta(1232) electromagnetic transition amplitudes, of interest to QCD and baryon structure, from the pion photoproduction observables. The model dependence is found to be much smaller than the range of values obtained when different datasets are fitted. In addition, some inconsistencies in the current database are discovered, and their affect on the extracted transition amplitudes is discussed.Comment: Revtex, 2 figs., submitted to PR
    • 

    corecore