209 research outputs found
Time series of high resolution photospheric spectra in a quiet region of the Sun. I. Analysis of global and spatial variations of line parameters
A 50 min time series of one-dimensional slit-spectrograms, taken in quiet sun
at disk center, observed at the German Vacuum Tower Telescope (Observatorio del
Teide), was used to study the global and spatial variations of different line
parameters. In order to determine the vertical structure of the photosphere two
lines with well separated formation heights have been considered. The data have
been filtered of p-modes to isolate the pure convective phenomenon. From our
studies of global correlation coefficients and coherence and phase shift
analyzes between the several line parameters, the following results can be
reported. The convective velocity pattern preserves structures larger than 1.0"
up to the highest layers of the photosphere (~ 435 km). However, at these
layers, in the intensity pattern only structures larger than 2.0" are still
connected with those at the continuum level although showing inverted
brightness contrast. This confirms an inversion of temperature that we have
found at a height of ~140 km. A possible evidence of gravity waves superimposed
to the convective motions is derived from the phase shift analysis. We
interpret the behavior of the full width at half maximum and the equivalent
width as a function of the distance to the granular borders, as a consequence
of enhanced turbulence and/or strong velocity gradients in the intergranular
lanes.Comment: 16 pages, 15 figures, 5 tables; Astronomy & Astrophysics, Volume 408,
p.363-378, 200
Oscillation of solar radio emission at coronal acoustic cut-off frequency
Recent SECCHI COR2 observations on board STEREO-A spacecraft have detected
density structures at a distance of 2.5--15~R propagating with periodicity of
about 90~minutes. The observations show that the density structures probably
formed in the lower corona. We used the large Ukrainian radio telescope URAN-2
to observe type IV radio bursts in the frequency range of 8--32~MHz during the
time interval of 08:15--11:00~UT on August 1, 2011. Radio emission in this
frequency range originated at the distance of 1.5--2.5 R according to the
Baumbach-Allen density model of the solar corona. Morlet wavelet analysis
showed the periodicity of 80~min in radio emission intensity at all
frequencies, which demonstrates that there are quasi-periodic variations of
coronal density at all heights. The observed periodicity corresponds to the
acoustic cut-off frequency of stratified corona at a temperature of 1~MK. We
suggest that continuous perturbations of the coronal base in the form of
jets/explosive events generate acoustic pulses, which propagate upwards and
leave the wake behind oscillating at the coronal cut-off frequency. This wake
may transform into recurrent shocks due to the density decrease with height,
which leads to the observed periodicity in the radio emission. The recurrent
shocks may trigger quasi-periodic magnetic reconnection in helmet streamers,
where the opposite field lines merge and consequently may generate periodic
density structures observed in the solar wind.Comment: 10 pages, 6 figures, accepted in A&
Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES
The ANTARES radiation hydrodynamics code is capable of simulating the solar
granulation in detail unequaled by direct observation. We introduce a
state-of-the-art numerical tool to the solar physics community and demonstrate
its applicability to model the solar granulation. The code is based on the
weighted essentially non-oscillatory finite volume method and by its
implementation of local mesh refinement is also capable of simulating turbulent
fluids. While the ANTARES code already provides promising insights into
small-scale dynamical processes occurring in the quiet-Sun photosphere, it will
soon be capable of modeling the latter in the scope of radiation
magnetohydrodynamics. In this first preliminary study we focus on the vertical
photospheric stratification by examining a 3-D model photosphere with an
evolution time much larger than the dynamical timescales of the solar
granulation and of particular large horizontal extent corresponding to on the solar surface to smooth out horizontal spatial
inhomogeneities separately for up- and downflows. The highly resolved Cartesian
grid thereby covers of the upper convection zone and the
adjacent photosphere. Correlation analysis, both local and two-point, provides
a suitable means to probe the photospheric structure and thereby to identify
several layers of characteristic dynamics: The thermal convection zone is found
to reach some ten kilometers above the solar surface, while convectively
overshooting gas penetrates even higher into the low photosphere. An wide transition layer separates the convective from the
oscillatory layers in the higher photosphere.Comment: Accepted for publication in Astrophysics and Space Science; 18 pages,
12 figures, 2 tables; typos correcte
- …