75 research outputs found

    From introduction to nuisance growth: A review of traits of alien aquatic plants which contribute to their invasiveness

    Get PDF
    Invasive alien aquatic plant species (IAAPs) cause serious ecological and economic impact and are a major driver of changes in aquatic plant communities. Their invasive success is influenced by both abiotic and biotic factors. Here, we summarize the existing knowledge on the biology of 21 IAAPs (four free-floating species, eight sediment-rooted, emerged or floating-leaved species, and nine sediment-rooted, submerged species) to highlight traits that are linked to their invasive success. We focus on those traits which were documented as closely linked to plant invasions, including dispersal and growth patterns, allelopathy and herbivore defence. The traits are generally specific to the different growth forms of IAAPs. In general, the species show effective dispersal and spread mechanisms, even though sexual and vegetative spread differs strongly between species. Moreover, IAAPs show varying strategies to cope with the environment. The presented overview of traits of IAAPs will help to identify potential invasive alien aquatic plants. Further, the information provided is of interest for developing species-specific management strategies and effective prevention measures

    Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium)

    Full text link
    peer reviewedWe report a data-set of CO2, CH4, and N2O concentrations in the surface waters of the Meuse river network in Belgium, obtained during four surveys covering 50 stations (summer 2013 and late winter 2013, 2014 and 2015), from yearly cycles in four rivers of variable size and catchment land cover, and from 111 groundwater samples. Surface waters of the Meuse river network were over-saturated in CO2, CH4, N2O with respect to atmospheric equilibrium, acting as sources of these greenhouse gases to the atmosphere, although the dissolved gases also showed marked seasonal and spatial variations. Seasonal variations were related to changes in freshwater discharge following the hydrological cycle, with highest concentrations of CO2, CH4, N2O during low water owing to a longer water residence time and lower currents (i.e. lower gas transfer velocities), both contributing to the accumulation of gases in the water column, combined with higher temperatures favourable to microbial processes. Inter-annual differences of discharge also led to differences in CH4 and N2O that were higher in years with prolonged low water periods. Spatial variations were mostly due to differences in land cover over the catchments, with systems dominated by agriculture (croplands and pastures) having higher CO2, CH4, N2O levels than forested systems. This seemed to be related to higher levels of dissolved and particulate organic matter, as well as dissolved inorganic nitrogen in agriculture dominated systems compared to forested ones. Groundwater had very low CH4 concentrations in the shallow and unconfined aquifers (mostly fractured limestones) of the Meuse basin, hence, should not contribute significantly to the high CH4 levels in surface riverine waters. Owing to high dissolved concentrations, groundwater could potentially transfer important quantities of CO2 and N2O to surface waters of the Meuse basin, although this hypothesis remains to be tested

    Plants in aquatic ecosystems: current trends and future directions

    Get PDF
    Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International Symposium on Aquatic Plants, held in Edinburgh in September 2015, brought together 120 delegates from 28 countries and six continents. This special issue of Hydrobiologia includes a select number of papers on aspects of aquatic plants, covering a wide range of species, systems and issues. In this paper we present an overview of current trends and future directions in aquatic plant research in the early 21st century. Our understanding of aquatic plant biology, the range of scientific issues being addressed and the range of techniques available to researchers have all arguably never been greater; however, substantial challenges exist to the conservation and management of both aquatic plants and the ecosystems in which they are found. The range of countries and continents represented by conference delegates and authors of papers in the special issue illustrate the global relevance of aquatic plant research in the early 21st century but also the many challenges that this burgeoning scientific discipline must address
    corecore