4,728 research outputs found
Technology Requirements for Deep Space Measurements. Asteroid Fly-through Mission
Classification, spatial distribution, structure, and composition of asteroidal matte
Nightglow observations during NASA's mobile launch expedition number 1 Final report
Ship-based observations of night glow on 63 night
An energy concerving modification of numerical methods for the integration of equations of motion
In the integration of the equations of motion of a system of particles, conventional
numerical methods generate an error in the total energy of the same order as the truncation error. A simple modification of these methods is described, which results in exact conservation of the energy
A review of recent determinations of the composition and surface pressure of the atmos- phere of mars
Recent determinations of composition and surface pressure of Mars atmospher
Excitation of inertial modes in a closed grid turbulence experiment under rotation
We report an experimental study of the decay of grid-generated turbulence in
a confined geometry submitted to a global rotation. Turbulence is generated by
rapidly towing a grid in a parallelepipedic water tank. The velocity fields of
a large number of independent decays are measured in a vertical plane parallel
to the rotation axis using a corotating Particle Image Velocimetry system. We
first show that, when a "simple" grid is used, a significant amount of the
kinetic energy (typically 50%) is stored in a reproducible flow composed of
resonant inertial modes. The spatial structure of those inertial modes,
extracted by band-pass filtering, is found compatible with the numerical
results of Maas [Fluid Dyn. Res. 33, 373 (2003)]. The possible coupling between
these modes and turbulence suggests that turbulence cannot be considered as
freely decaying in this configuration. Finally, we demonstrate that these
inertial modes may be significantly reduced (down to 15% of the total energy)
by adding a set of inner tanks attached to the grid. This suggests that it is
possible to produce an effectively freely decaying rotating turbulence in a
confined geometry
A multiple scale model for tumor growth
We present a physiologically structured lattice model for vascular tumor growth which accounts for blood flow and structural adaptation of the vasculature, transport of oxygen, interaction between cancerous and normal tissue, cell division, apoptosis, vascular endothelial growth factor release, and the coupling between these processes. Simulations of the model are used to investigate the effects of nutrient heterogeneity, growth and invasion of cancerous tissue, and emergent growth laws
The decay of turbulence in rotating flows
We present a parametric space study of the decay of turbulence in rotating
flows combining direct numerical simulations, large eddy simulations, and
phenomenological theory. Several cases are considered: (1) the effect of
varying the characteristic scale of the initial conditions when compared with
the size of the box, to mimic "bounded" and "unbounded" flows; (2) the effect
of helicity (correlation between the velocity and vorticity); (3) the effect of
Rossby and Reynolds numbers; and (4) the effect of anisotropy in the initial
conditions. Initial conditions include the Taylor-Green vortex, the
Arn'old-Beltrami-Childress flow, and random flows with large-scale energy
spectrum proportional to . The decay laws obtained in the simulations for
the energy, helicity, and enstrophy in each case can be explained with
phenomenological arguments that separate the decay of two-dimensional from
three-dimensional modes, and that take into account the role of helicity and
rotation in slowing down the energy decay. The time evolution of the energy
spectrum and development of anisotropies in the simulations are also discussed.
Finally, the effect of rotation and helicity in the skewness and kurtosis of
the flow is considered.Comment: Sections reordered to address comments by referee
Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment
The first observation of fast and slow magnetocoriolis (MC) waves in a
laboratory experiment is reported. Rotating nonaxisymmetric modes arising from
a magnetized turbulent Taylor-Couette flow of liquid metal are identified as
the fast and slow MC waves by the dependence of the rotation frequency on the
applied field strength. The observed slow MC wave is damped but the observation
provides a means for predicting the onset of the Magnetorotational Instability
- …