100 research outputs found

    Maskrör från Köpingesandstenen

    Get PDF
    n/

    Paleocen vid Klagshamn

    Get PDF
    n/

    A novel causal mechanism for grey squirrel bark stripping: The Calcium Hypothesis

    Get PDF
    AbstractGrey squirrels, Sciurus carolinensis, damage trees in the UK by stripping bark and eating the underlying phloem; squirrel motivation for damage is, however, unknown. Damage can result in deterioration of timber quality and a significant economic toll on the forestry industry. Prediction of severe damage followed by targeted killing of squirrels is the current recommended management option. However, the use of warfarin (an anticoagulant poison) is now restricted in the UK and other more humane methods of killing are labour-intensive, so an alternative solution is needed. A better understanding of what motivates grey squirrels to strip bark may enable a preventive approach to be developed. Whilst the bark stripping literature has explored predictive factors affecting the likelihood of damage, causal understanding is lacking. The aim of this review is to introduce the Calcium Hypothesis as a possible explanation for bark stripping, with a view to informing the prevention of damage. The Calcium Hypothesis states that grey squirrels damage trees to ameliorate a calcium deficiency. The main predictive factors of bark stripping behaviour each inform and lend support to the Calcium Hypothesis. Calcium is stored in tree phloem, and damage increases with phloem width, providing squirrels with more calcium per unit area ingested. Calcium levels increase in trees as active growth resumes after winter dormancy, this occurs immediately prior to the main bark stripping season of May–July, and trees growing most vigorously are at increased risk of damage. It is likely grey squirrels also have a requirement for calcium during the bark stripping season. Adult females will be under post-parturition pressures such as lactation, and juveniles will be going through their main period of bone growth, both of which likely represent a requirement for calcium – which supports an observed positive correlation between juvenile abundance and bark stripping. A high autumnal seed crop increases juvenile recruitment the following spring, and could also induce a requirement for calcium to a population due to the high phosphorus to calcium ratio of seeds. To further investigate the hypothesis, the extent to which grey squirrels can utilise calcium oxalate, as calcium occurs in bark, should be determined, and also the extent to which grey squirrels undergo seasonal periods of calcium deficiency. Increasing our causal understanding of bark stripping could inform the future development of preventive measures to aid forest management

    HLA-B*08 identified as the most associated MHC locus for anti-carbamylated protein antibody-positive/anti-CCP-negative rheumatoid arthritis

    Get PDF
    Objective: Previously, only the HLA-DRB1 alleles have been assessed in rheumatoid arthritis (RA). The aim of the present study was to identify the key major histocompatibility complex (MHC) susceptibility factors showing a significant association with anti-carbamylated protein antibody-positive (anti-CarP+) RA. Methods: Analyses were restricted to RA patients who were anti-cyclic citrullinated peptide antibody negative (anti-CCP-), because the anti-CCP status dominated the results otherwise. Therefore, we studied samples from 1,821 anti-CCP- RA patients and 6,821 population controls from Spain, Sweden, and the Netherlands. The genotypes for ~8,000 MHC biallelic variants were assessed by dense genotyping and imputation. Their association with the anti-CarP status in RA patients was tested with logistic regression and combined with inverse-variance meta-analysis. Significance of the associations was assessed according to a study-specific threshold of P < 2.0 × 10-5 . Results: The HLA-B*08 allele and its correlated amino acid variant Asp-9 showed a significant association with anti-CarP+/anti-CCP- RA (P < 3.78 × 10-7 ; I2 = 0). This association was specific when assessed relative to 3 comparator groups: population controls, anti-CarP-/anti-CCP- RA patients, and anti-CCP- RA patients who were positive for other anti-citrullinated protein antibodies. Based on these findings, anti-CarP+/anti-CCP- RA patients could be separated from other antibody-defined subsets of RA patients in whom an association with the HLA-B*08 allele has been previously demonstrated. No other MHC variant remained associated with anti-CarP+/anti-CCP- RA after accounting for the presence of the HLA-B*08 allele. Specifically, the reported association of HLA-DRB1*03 was observed at a level comparable to that reported previously, but it was attributable to linkage disequilibrium. Conclusion: These results identify HLA-B*08 carrying Asp-9 as the MHC locus showing the strongest association with anti-CarP+/anti-CCP- RA. This knowledge may help clarify the role of the HLA in susceptibility to specific subsets of RA, by shaping the spectrum of RA autoantibodies. © 2020, American College of Rheumatology

    Insights into FcγR involvement in pain-like behavior induced by an RA-derived anti-modified protein autoantibody

    Get PDF
    Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint

    Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations

    Get PDF
    Intravenous and subcutaneous immunoglobulin preparations, consisting of IgG class antibodies, are increasingly used to treat a broad range of pathological conditions, including humoral immune deficiencies, as well as acute and chronic inflammatory or autoimmune disorders. A plethora of Fab- or Fc-mediated immune regulatory mechanisms has been described that might act separately or in concert, depending on pathogenesis or stage of clinical condition. Attempts have been undertaken to improve the efficacy of polyclonal IgG preparations, including the identification of relevant subfractions, mild chemical modification of molecules, or modification of carbohydrate side chains. Furthermore, plasma-derived IgA or IgM preparations may exhibit characteristics that might be exploited therapeutically. The need for improved treatment strategies without increase in plasma demand is a goal and might be achieved by more optimal use of plasma-derived proteins, including the IgA and the IgM fractions. This article provides an overview on the current knowledge and future strategies to improve the efficacy of regular IgG preparations and discusses the potential of human plasma-derived IgA, IgM, and preparations composed of mixtures of IgG, IgA, and IgM

    Circulating IgM Requires Plasma Membrane Disruption to Bind Apoptotic and Non-Apoptotic Nucleated Cells and Erythrocytes

    Get PDF
    <div><p>Autoimmunity is associated with defective phagocytic clearance of apoptotic cells. IgM deficient mice exhibit an autoimmune phenotype consistent with a role for circulating IgM antibodies in apoptotic cell clearance. We have extensively characterised IgM binding to non-apoptotic and apoptotic mouse thymocytes and human Jurkat cells using flow cytometry, confocal imaging and electron microscopy. We demonstrate strong specific IgM binding to a subset of Annexin-V (AnnV)<sup>+</sup>PI (Propidium Iodide)<sup>+</sup> apoptotic cells with disrupted cell membranes. Electron microscopy studies indicated that IgM<sup>+</sup>AnnV<sup>+</sup>PI<sup>+</sup> apoptotic cells exhibited morphologically advanced apoptosis with marked plasma membrane disruption compared to IgM<sup>-</sup>AnnV<sup>+</sup>PI<sup>+</sup> apoptotic cells, suggesting that access to intracellular epitopes is required for IgM to bind. Strong and comparable binding of IgM to permeabilised non-apoptotic and apoptotic cells suggests that IgM bound epitopes are 'apoptosis independent' such that IgM may bind any cell with profound disruption of cell plasma membrane integrity. In addition, permeabilised erythrocytes exhibited significant IgM binding thus supporting the importance of cell membrane epitopes. These data suggest that IgM may recognize and tag damaged nucleated cells or erythrocytes that exhibit significant cell membrane disruption. The role of IgM <i>in vivo</i> in conditions characterized by severe cell damage such as ischemic injury, sepsis and thrombotic microangiopathies merits further exploration.</p></div
    corecore