82 research outputs found
Energy and Exergy Analysis on Si Engine by Blend of Ethanol with Petrol
Need to use renewable energy in the form of ethanol fuel derived using agriculture waste to reduce load on petrol derived from crude oil, which is available in limited quantity. This is mostly due to stock of petroleum product are depleting day by day, hence more use of renewable fuels gets attraction in developing country like India. In recent years, Considerable efforts made to develop and introduce alternative renewable fuel, to replace conventional petroleum-base fuels.The main objective of the current work id to investigate influences of blends of ethanol-petrol blend used in IC engine performance using energy and exergy analysis. Here, experimental work divided into mainly two parts. In first part, Engine performance carried out using E0, E25, E40 and E100 blends of ethanol-petrol blends. In other part, exergy analysis carried out. Experimental test set-up developed in laboratory. The stationary petrol engine was run in laboratory at a medium speed, variable load condition experienced in most urban driving conditions and various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue and specific gravity investigated. Heat balance sheet and availability calculated for different condition like E0, E25, E40 and E100 blends of ethanol-petrol blends
FIBRODYSPLASIA OSSIFICANS PROGRESSIVA
Fibrodysplasia ossificans progressiva is a rare genetic disease characterized by widespread soft tissue ossification and congenital stigmata of the extremities. We report a male child who had bilateral Hallux Valgus and firm swelling over lower back region since birth. At 3 years of age, he developed restriction of neck movement which gradually progressed and within 1 year duration involved multiple joints, restricting movement of hip, shoulder, spine and knee. Patient was not able to bend forward, squat or turn head to either side. Patient also had acyanotic congenital heart disease. Multiple foci of ossification developed over bilateral shoulder, right hip and lower back region. Patient has not developed episodes of crisis yet and all swellings and restrictions are painless. A review showed few similar case reports in the Brazilian literature. We revisited the criteria for diagnosis and the essentials of management and treatment
Genome-Wide TOP2A DNA Cleavage is Biased Toward Translocated and Highly Transcribed Loci
Type II topoisomerases orchestrate proper DNA topology, and they are the targets of anti-cancer drugs that cause treatment-related leukemias with balanced translocations. Here, we develop a high-throughput sequencing technology to define TOP2 cleavage sites at single-base precision, and use the technology to characterize TOP2A cleavage genome-wide in the human K562 leukemia cell line. We find that TOP2A cleavage has functionally conserved local sequence preferences, occurs in cleavage cluster regions (CCRs), and is enriched in introns and lincRNA loci. TOP2A CCRs are biased toward the distal regions of gene bodies, and TOP2 poisons cause a proximal shift in their distribution. We find high TOP2A cleavage levels in genes involved in translocations in TOP2 poisonβrelated leukemia. In addition, we find that a large proportion of genes involved in oncogenic translocations overall contain TOP2A CCRs. The TOP2A cleavage of coding and lincRNA genes is independently associated with both length and transcript abundance. Comparisons to ENCODE data reveal distinct TOP2A CCR clusters that overlap with marks of transcription, open chromatin, and enhancers. Our findings implicate TOP2A cleavage as a broad DNA damage mechanism in oncogenic translocations as well as a functional role of TOP2A cleavage in regulating transcription elongation and gene activation
N6-Methyladenosine Inhibits Local Ribonucleolytic Cleavage to Stabilize mRNAs in Arabidopsis
N6-methyladenosine (m6A) is a dynamic, reversible,
covalently modified ribonucleotide that occurs predominantly
toward 30 ends of eukaryotic mRNAs
and is essential for their proper function and regulation.
In Arabidopsis thaliana, many RNAs contain at
least one m6A site, yet the transcriptome-wide function
of m6A remains mostly unknown. Here, we show
that manym6A-modified mRNAs in Arabidopsis have
reduced abundance in the absence of this mark. The
decrease in abundance is due to transcript destabilization
caused by cleavage occurring 4 or 5 nt directly
upstream of unmodified m6A sites. Importantly, we
also find that, upon agriculturally relevant salt treatment,
m6A is dynamically deposited on and stabilizes
transcripts encoding proteins required for salt
and osmotic stress response. Overall, our findings
reveal that m6A generally acts as a stabilizing mark
through inhibition of site-specific cleavage in plant
transcriptomes, and this mechanism is required
for proper regulation of the salt-stress-responsive
transcriptome
Traditional use of medicinal plants by the Jaintia tribes in North Cachar Hills district of Assam, northeast India
The study of ethnobotany relating to any tribe is in itself a very intricate or convoluted process. This paper documents the traditional knowledge of medicinal plants that are in use by the indigenous Jaintia tribes residing in few isolated pockets of northeast India. The present study was done through structured questionnaires in consultations with the tribal practitioners and has resulted in the documentation of 39 medicinal plant species belonging to 27 families and 35 genera. For curing diverse form of ailments, the use of aboveground plant parts was higher (76.59%) than the underground plant parts (23.41%). Of the aboveground plant parts, leaf was used in the majority of cases (23 species), followed by fruit (4). Different underground plant forms such as root, tuber, rhizome, bulb and pseudo-bulb were also found to be in use by the Jaintia tribe as a medicine. Altogether, 30 types of ailments have been reported to be cured by using these 39 medicinal plant species. The study thus underlines the potentials of the ethnobotanical research and the need for the documentation of traditional ecological knowledge pertaining to the medicinal plant utilization for the greater benefit of mankind
A Pro-Cathepsin L Mutant Is a Luminal Substrate for Endoplasmic-Reticulum-Associated Degradation in C. elegans
Endoplasmic-reticulum associated degradation (ERAD) is a major cellular misfolded protein disposal pathway that is well conserved from yeast to mammals. In yeast, a mutant of carboxypeptidase Y (CPY*) was found to be a luminal ER substrate and has served as a useful marker to help identify modifiers of the ERAD pathway. Due to its ease of genetic manipulation and the ability to conduct a genome wide screen for modifiers of molecular pathways, C. elegans has become one of the preferred metazoans for studying cell biological processes, such as ERAD. However, a marker of ERAD activity comparable to CPY* has not been developed for this model system. We describe a mutant of pro-cathepsin L fused to YFP that no longer targets to the lysosome, but is efficiently eliminated by the ERAD pathway. Using this mutant pro-cathepsin L, we found that components of the mammalian ERAD system that participate in the degradation of ER luminal substrates were conserved in C. elegans. This transgenic line will facilitate high-throughput genetic or pharmacological screens for ERAD modifiers using widefield epifluorescence microscopy
Rationale and design of the United Kingdom Heart Failure with Preserved Ejection Fraction Registry
\ua9 Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY. Published by BMJ.Objective: Heart failure with preserved ejection fraction (HFpEF) is a common heterogeneous syndrome that remains imprecisely defined and consequently has limited treatment options and poor outcomes. Methods: The UK Heart Failure with Preserved Ejection Fraction Registry (UK HFpEF) is a prospective data-enabled cohort and platform study. The study will develop a large, highly characterised cohort of patients with HFpEF. A biobank will be established. Deep clinical phenotyping, imaging, multiomics and centrally held national electronic health record data will be integrated at scale, in order to reclassify HFpEF into distinct subgroups, improve understanding of disease mechanisms and identify new biological pathways and molecular targets. Together, these will form the basis for developing diagnostics and targeted therapeutics specific to subgroups. It will be a platform for more effective and efficient trials, focusing on subgroups in whom targeted interventions are expected to be effective, with consent in place to facilitate rapid recruitment, and linkage for follow-up. Patients with a diagnosis of HFpEF made by a heart failure specialist, who have had natriuretic peptide levels measured and a left ventricular ejection fraction >40% are eligible. Patients with an ejection fraction between 40% and 49% will be limited to no more than 25% of the cohort. Conclusions: UK HFpEF will develop a rich, multimodal data resource to enable the identification of disease endotypes and develop more effective diagnostic strategies, precise risk stratification and targeted therapeutics. Trial registration number: NCT05441839
Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin Ξ±1-antitrypsin Z
The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in Ξ±1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling Ξ±1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms
Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings
The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism
- β¦