410 research outputs found
Anomalies of the infrared-active phonons in underdoped YBCO as an evidence for the intra-bilayer Josephson effect
The spectra of the far-infrared c-axis conductivity of underdoped YBCO
crystals exhibit dramatic changes of some of the phonon peaks when going from
the normal to the superconducting state. We show that the most striking of
these anomalies can be naturally explained by changes of the local fields
acting on the ions arising from the onset of inter- and intra-bilayer Josephson
effects.Comment: Revtex, epsf, 6 pages, 3 figures encapsulated in tex
Microphotoluminescence study of disorder in ferromagnetic (Cd,Mn)Te quantum well
Microphotoluminescence mapping experiments were performed on a modulation
doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The
zero field splitting that reveals the presence of a spontaneous magnetization
in the low-temperature phase, is measured locally; its fluctuations are
compared to those of the spin content and of the carrier density, also measured
spectroscopically in the same run. We show that the fluctuations of the carrier
density are the main mechanism responsible for the fluctuations of the
spontaneous magnetization in the ferromagnetic phase, while those of the Mn
spin density have no detectable effect at this scale of observation.Comment: 4 pages, 3 figure
Excitonic giant Zeeman effect in GaN:Mn^3+
We describe a direct observation of the excitonic giant Zeeman splitting in
(Ga,Mn)N, a wide-gap III-V diluted magnetic semiconductor. Reflectivity and
absorption spectra measured at low temperatures display the A and B excitons,
with a shift under magnetic field due to s,p-d exchange interactions. Using an
excitonic model, we determine the difference of exchange integrals between
Mn^3+ and free carriers in GaN, N_0(alpha-beta)=-1.2 +/- 0.2 eV. Assuming a
reasonable value of alpha, this implies a positive sign of beta which
corresponds to a rarely observed ferromagnetic interaction between the magnetic
ions and the holes.Comment: 4 pages, 4 figure
Single spin optical read-out in CdTe/ZnTe quantum dot studied by photon correlation spectroscopy
Spin dynamics of a single electron and an exciton confined in CdTe/ZnTe
quantum dot is investigated by polarization-resolved correlation spectroscopy.
Spin memory effects extending over at least a few tens of nanoseconds have been
directly observed in magnetic field and described quantitatively in terms of a
simple rate equation model. We demonstrate an effective (68%) all-optical
read-out of the single carrier spin state through probing the degree of
circular polarization of exciton emission after capture of an oppositely
charged carrier. The perturbation introduced by the pulsed optical excitation
serving to study the spin dynamics has been found to be the main source of the
polarization loss in the read-out process. In the limit of low laser power the
read-out efficiency extrapolates to a value close to 100%. The measurements
allowed us as well to determine neutral exciton spin relaxation time ranging
from 3.4 +/- 0.1 ns at B = 0 T to 16 +/- 3 ns at B = 5 T.Comment: to appear in Phys. Rev.
Optical manipulation of a single Mn spin in a CdTe-based quantum dot
A system of two coupled CdTe quantum dots, one of them containing a single Mn
ion, was studied in continuous wave and modulated photoluminescence,
photoluminescence excitation, and photon correlation experiments. Optical
writing of information in the spin state of the Mn ion has been demonstrated,
using orientation of the Mn spin by spin-polarized carriers transferred from
the neighbor quantum dot. Mn spin orientation time values from 20 ns to 100 ns
were measured, depending on the excitation power. Storage time of the
information in the Mn spin was found to be enhanced by application of a static
magnetic field of 1 T, reaching hundreds of microseconds in the dark. Simple
rate equation models were found to describe correctly static and dynamical
properties of the system.Comment: 4 pages, 3 figure
- …
