61 research outputs found
ModÚles d'abstraction pour la résolution de problÚmes combinatoires
Conceptualiser des modĂšles dâabstraction de haut niveau pour la rĂ©solution de problĂšmes combinatoires peut mener Ă la dĂ©finition de stratĂ©gies alternatives simples, efficaces et gĂ©nĂ©riques, concernant les politiques de mouvement et de choix d\u27opĂ©rateur au sein dâalgorithmes de recherche locale et Ă©volutionnaires. Dans le paradigme des algorithmes Ă©volutionnaires, une population d\u27individus Ă©volue au moyen de transformations locales, et Ă©ventuellement de croisements. Cette mĂ©taphore peut ĂȘtre Ă©tendue par les modĂšles en iles, oĂč les individus sont partitionnĂ©s en sous-populations, qui Ă©voluent par le jeu des politiques migratoires. Dans ces travaux, nous proposons un modĂšle en iles dynamique permettant de rĂ©guler les migrations des individus dâile en ile en fonction de lâeffet des prĂ©cĂ©dentes migrations. En outre, associer des opĂ©rateurs diffĂ©rents Ă chaque ile permet au modĂšle dâaffecter aux individus, de maniĂšre adaptative, les opĂ©rateurs les plus pertinents tout au long de la recherche. Nous nous arrĂȘtons alors plus gĂ©nĂ©ralement sur cette problĂ©matique de la sĂ©lection adaptative dâopĂ©rateurs, et y discutons dâanalogies avec la thĂ©orie des bandits manchots. Cela nous permet de dĂ©finir des modĂšles alternatifs simples comme les bandits Ă bras interconnectĂ©s, qui pourraient aider Ă la conception et lâĂ©valuation de stratĂ©gies de sĂ©lection dâopĂ©rateurs. Une partie essentielle des travaux que nous prĂ©sentons sâattache aux paysages de fitness ; ceux-ci constituent une abstraction naturelle des instances de problĂšmes combinatoires abordĂ©es par une approche Ă©volutionnaire. Ils offrent notamment une reprĂ©sentation schĂ©matique des trajectoires pouvant ĂȘtre empruntĂ©es par des algorithmes de recherche locale. En appuyant notre propos de larges validations expĂ©rimentales, nous utilisons ici cette reprĂ©sentation abstraite pour infirmer certains prĂ©jugĂ©s quant au potentiel dâefficacitĂ© de certaines stratĂ©gies de recherche locale. Nous nous focalisons en particulier sur les techniques dâintensification, afin dâidentifier les principaux facteurs dâefficacitĂ© des algorithmes de recherche locale. Les rĂ©sultats de ces Ă©tudes, particuliĂšrement riches dâenseignements, nous ont conduit Ă la conception de stratĂ©gies de recherche originales et performantes pour la rĂ©solution approchĂ©e de problĂšmes dâoptimisation combinatoire
Toward an Efficient Exploration of Fitness Landscapes
Within local search algorithms, descent methods are rarely studied experimentally. However,
these search techniques are the basis of many modern metaheuristics and have an inïŹuence on the
ability of an algorithm to achieve good solutions of a ïŹtness landscape. Through a large empirical study
of classic runs, we show that certain ideas about descents methods are false. These results indicate
that it is possible to make a descent âintelligentâ and lead to better solutions, regardless of the problem
addressed
Nouvelles heuristiques de voisinage et mémétiques pour le problÚme Maximum de Parcimonie
Phylogenetic reconstruction aims at reconstructing the evolutionary history of a set of species, represented by a tree. Among the reconstruction methods, the Maximum Parsimony (MP) problem consists, given a set of aligned sequences to find a binary tree, whose leaves are associated to the sequences and which minimizes the parsimony score. Traditionally, existing resolution approaches of this NP-complete problem apply basic heuristic methods, like greedy algorithms and local search. One of the difficulties concerns the handling of binary trees and the definition of tree neighborhoods. In this thesis, we first focus on an improvement of descent algorithms. We empirically show the limits of the existing tree neighborhoods, and introduce a progressive neighborhood which evolves during the search to limit the evaluation of inappropriate neighbors. This algorithm is combined with a genetic algorithm which uses a specific tree crossover based on topological distances between each pair of leaves. This memetic algorithm shows very competitive results, both on real benchmarks taken from the literature as well as with randomly generated instances
Autonomous Local Search Algorithms with Island Representation
The aim of this work is to use this dynamic island model to autonomously select local search operators within a classical evolutionary algorithm. In order to assess the relevance of this approach, we will use the model considering a population-based local search algorithm, with no crossover and where each island is associated to a particular local search operator. Here, contrary to recent works [6], the goal is not to forecast the most promising crossovers between individuals like in classical island models, but to detect at each time of the search the most relevant LS operators. This application constitutes an original approach in defining autonomous algorithms
Auto-adaptative Migration Policies in Island-Based Genetic Algorithms
Date du colloque : 2010International audienc
Climbing Combinatorial Fitness Landscapes
Hill-climbing constitutes one of the simplest way to produce approximate solutions of a combinatorial optimization problem, and is a central component of most advanced metaheuristics. This paper focuses on evaluating climbing techniques in a context where deteriorating moves are not allowed, in order to isolate the intensification aspect of metaheuristics. We aim at providing guidelines to choose the most adequate method for climbing efficiently fitness landscapes with respect to their size and some ruggedness and neutrality measures. To achieve this, we compare best and first improvement strategies, as well as different neutral move policies, on a large set of combinatorial fitness landscapes derived from academic optimization problems, including NK landscapes. The conclusions highlight that first-improvement is globally more efficient to explore most landscapes, while best-improvement superiority is observed only on smooth landscapes and on some particular structured landscapes. The empirical analysis realized on neutral move policies shows that a stochastic hill-climbing reaches in average better configurations and requires fewer evaluations than other climbing techniques. Results indicate that accepting neutral moves at each step of the search should be useful on all landscapes, especially those having a significant rate of neutrality. Last, we point out that reducing adequately the precision of a fitness function makes the climbing more efficient and helps to solve combinatorial optimization problems
- âŠ