9 research outputs found
Supporting lock-free composition of concurrent data objects
Lock-free data objects offer several advantages over their blocking
counterparts, such as being immune to deadlocks and convoying and, more
importantly, being highly concurrent. But they share a common disadvantage in
that the operations they provide are difficult to compose into larger atomic
operations while still guaranteeing lock-freedom. We present a lock-free
methodology for composing highly concurrent linearizable objects together by
unifying their linearization points. This makes it possible to relatively
easily introduce atomic lock-free move operations to a wide range of concurrent
objects. Experimental evaluation has shown that the operations originally
supported by the data objects keep their performance behavior under our
methodology
Scalable group communication supporting configurable levels of consistency
Group communication is deployed in many evolving Internet-scale cooperative applications such as multiplayer online games and virtual worlds to efficiently support interaction on information relevant to a potentially very large number of users or objects. Especially peer-to-peer based group communication protocols have evolved as a promising approach to allow intercommunication between many distributed peers. Yet, the delivery semantics of robust and scalable protocols such as gossiping is not sufficient to support consistency semantics beyond eventual consistency because no relationship on the order of events is enforced. On the other hand, traditional consistency models provided by reliable group communication providing causal or even total order are restricted to support only small groups.This article proposes the cluster consistency model which bridges the gap between traditional and current approaches in supporting both scalability and ordered event delivery. We introduce a dynamic and fault tolerant cluster management method that can coordinate concurrent access to resources in a peer-to-peer system and can be used to establish fault-tolerant configurable cluster consistency with predictable reliability, running on top of decentralised probabilistic protocols supporting scalable group communication. This is achieved by a general two-layered architecture that can be applied on top of the standard Internet communication layers and offers a modular, layered set of services to the applications that need them. Further, we present a fault-tolerant method implementing causal cluster consistency with predictable reliability, running on top of decentralised probabilistic protocols supporting group communication.This paper provides analytical and experimental evaluation of the properties regarding the fault tolerance of the approach. Furthermore, our experimental study, conducted by implementing and evaluating the two-layered architecture on top of standard Internet transport services, shows that the approach scales well, imposes an even load on the system, and provides high-probability reliability guarantees
Scalable group communication supporting configurable levels of consistency
Group communication is deployed in many evolving Internet-scale cooperative applications such as multiplayer online games and virtual worlds to efficiently support interaction on information relevant to a potentially very large number of users or objects. Especially peer-to-peer based group communication protocols have evolved as a promising approach to allow intercommunication between many distributed peers. Yet, the delivery semantics of robust and scalable protocols such as gossiping is not sufficient to support consistency semantics beyond eventual consistency because no relationship on the order of events is enforced. On the other hand, traditional consistency models provided by reliable group communication providing causal or even total order are restricted to support only small groups.This article proposes the cluster consistency model which bridges the gap between traditional and current approaches in supporting both scalability and ordered event delivery. We introduce a dynamic and fault tolerant cluster management method that can coordinate concurrent access to resources in a peer-to-peer system and can be used to establish fault-tolerant configurable cluster consistency with predictable reliability, running on top of decentralised probabilistic protocols supporting scalable group communication. This is achieved by a general two-layered architecture that can be applied on top of the standard Internet communication layers and offers a modular, layered set of services to the applications that need them. Further, we present a fault-tolerant method implementing causal cluster consistency with predictable reliability, running on top of decentralised probabilistic protocols supporting group communication.This paper provides analytical and experimental evaluation of the properties regarding the fault tolerance of the approach. Furthermore, our experimental study, conducted by implementing and evaluating the two-layered architecture on top of standard Internet transport services, shows that the approach scales well, imposes an even load on the system, and provides high-probability reliability guarantees
Cache-Aware Lock-Free Queues for Multiple Producers/Consumers and Weak Memory Consistency
A lock-free FIFO queue data structure is presented in this paper. The algorithm supports multiple producers and multiple consumers and weak memory models. It has been designed to be cache-aware and work directly on weak memory models. It utilizes the cache behavior in concert with lazy updates of shared data, and a dynamic lock-free memory management scheme to decrease unnecessary synchronization and increase performance. Experiments on an 8-way multi-core platform show significantly better performance for the new algorithm compared to previous fast lock-free algorithms
Concurrent lock-free unbounded priority queue with mutable priorities
The priority queue with DeleteMin and Insert operations is a classical interface for ordering items associated with priorities. Some important algorithms, such as Dijkstra’s single-source-shortest-path, Adaptive Huffman Trees, etc. also require changing the priorities of items in the runtime. Existing lock-free priority queues do not directly support the dynamic mutation of the priorities. This paper presents the first concurrent lock-free unbounded binary heap that implements a priority queue with mutable priorities. The operations are provably linearizable. We also designed an optimized version of the algorithm by combining the concurrent operations that substantially improves the performance. For experimental evaluation, we implemented the algorithm in both C/C++ and Java. A number of micro-benchmarks show that our algorithm performs well in comparison to existing implementations
Lightweight Causal Cluster Consistency
Within an effort for providing a layered architecture of services supporting multi-peer collaborative applications, this paper proposes a new type of consistency management aimed for applications where a large number of processes share a large set of replicated objects. Many such applications, like peer-to-peer collaborative environments for training or entertaining purposes, platforms for distributed monitoring and tuning of networks, rely on a fast propagation of updates on objects, however they also require a notion of consistent state update. To cope with these requirements and also ensure scalability, we propose the cluster consistency model. We also propose a two-layered architecture for providing cluster consistency. This is a general architecture that can be applied on top of the standard Internet communication layers and offers a modular, layered set of services to the applications that need them. Further, we present a fault-tolerant protocol implementing causal cluster consistency with predictable reliability, running on top of decentralised probabilistic protocols supporting group communication. Our experimental study, conducted by implementing and evaluating the two-layered architecture on top of standard Internet transport services, shows that the approach scales well, imposes an even load on the system, and provides high-probability reliability guarantees