17 research outputs found

    AppPrint: Automatic Fingerprinting of Mobile Applications in Network Traffic

    No full text

    nf.io

    No full text

    Peel the onion: Recognition of Android apps behind the Tor Network

    Get PDF
    In this work we show that Tor is vulnerable to app deanonymization attacks on Android devices through network traffic analysis. For this purpose, we describe a general methodology for performing an attack that allows to deanonymize the apps running on a target smartphone using Tor, which is the victim of the attack. Then, we discuss a Proof-of-Concept, implementing the methodology, that shows how the attack can be performed in practice and allows to assess the deanonymization accuracy that it is possible to achieve. While attacks against Tor anonymity have been already gained considerable attention in the context of website fingerprinting in desktop environments, to the best of our knowledge this is the first work that highlights Tor vulnerability to apps deanonymization attacks on Android devices. In our experiments we achieved an accuracy of 97%

    Peel the Onion: Recognition of Android Apps Behind the Tor Network

    No full text
    According to Freedom on the Net 2017 report [15] more than 60% of World’s Internet users are not completely free from censorship. Solutions like Tor allow users to gain more freedom, bypassing these restrictions. For this reason they are continuously under deep observation to detect vulnerabilities that would compromise users anonymity. The aim of this work is showing that Tor is vulnerable to app deanonymization attacks on Android devices through network traffic analysis. While attacks against Tor anonymity have already gained considerable attention in the context of website fingerprinting in desktop environments, to the best of our knowledge this is the first work that addresses a similar problem on Android devices. For this purpose, we describe a general methodology for performing an attack that allows to deanonymize the apps running on a target smartphone using Tor. Then, we discuss a Proof-of-Concept, implementing the methodology, that shows how the attack can be performed in practice and allows to assess the deanonymization accuracy that it is possible to achieve. Moreover, we made the software of the Proof-of-Concept available, as well as the datasets used to evaluate it. In our extensive experimental evaluation, we achieved an accuracy of 97%

    Traffic steering in software defined networks

    No full text

    Locating Emergencies in a Campus Using Wi-Fi Access Point Association Data

    No full text
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Reques

    Category-Based YouTube Request Pattern Characterization

    No full text

    OpenNF

    No full text

    OpenNF

    No full text
    corecore