38 research outputs found
Modelling the hygroscopic growth factors of aerosol material containing a large water-soluble organic fraction, collected at the Storm Peak Laboratory
The compositions of six aggregated aerosol samples from the Storm Peak site have been comprehensively analysed (Hallar et al., 2013), focusing particularly on the large water-extractable organic fraction which consists of both high molecular weight organic compounds and a range of acids and sugar-alcohols. The contribution of the soluble organic fraction of atmospheric aerosols to their hygroscopicity is hard to quantify, largely because of the lack of a detailed knowledge of both composition and the thermodynamic properties of the functionally complex compounds and structures the fraction contains. In this work we: (i) develop a means of predicting the relative solubility of the compounds in the water-extractable organic material from the Storm Peak site, based upon what is known about their chemical composition; (ii) derive the probable soluble organic fraction from comparisons of model predictions with the measured hygroscopicity; (iii) test a model of the water uptake of the total aerosol (inorganic plus total water-extractable organic compounds). Using a novel UNIFAC-based method, different assignments of functional groups to the high molecular weight water soluble organic compounds (WSOC) were explored, together with their effects on calculated hygroscopic growth factors, constrained by the known molecular formulae and the double bond equivalents associated with each molecule. The possible group compositions were compared with the results of ultrahigh resolution mass spectrometry measurements of the organic material, which suggest large numbers of alcohol (âOH) and acid (âCOOH) groups. A hygroscopicity index (HI) was developed. The measured hygroscopic growth is found to be consistent with a dissolution of the WSOC material that varies approximately linearly with RH, such that the dissolved fraction is about 0.45â0.85âŻat 90% relative humidity when ordering by HI, depending on the assumptions made. This relationship, if it also applies to other types of organic aerosol material, provides a simple approach to calculating both water uptake and CCN activity (and the Îș parameter for hygroscopic growth). The hygroscopicity of the total aerosol was modelled using a modified Zdanovskii-Stokes-Robinson approach as the sum of that of the three analysed fractions: inorganic ions (predicted), individual organic acids and âsugar alcoholsâ (predicted), and the high molecular weight WSOC fraction (measured). The calculated growth factors broadly agree with the measurements, and validate the approach taken. The insights into the dissolution of the organic material seem likely to apply to other largely biogenic aerosols from similar remote locations
The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America
Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in western North America.
Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations) in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the western United States.National Science Foundation (U.S.) (ATM- 0929282)National Science Foundation (U.S.) (ATM-0939021)National Science Foundation (U.S.) (ATM-0938940)United States. Dept. of Energy. Office of Scienc
Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory
Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizerâCCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fallâwinter of 2007â2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90âŻ% RH, expressed in terms of the hygroscopicity parameter, Îș, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70âŻ% RH
Recommended from our members
Impacts of increasing aridity and wildfires on aerosol loading in the intermountain Western US
Feedbacks between climate warming, land surface aridity, and wildfire-derived aerosols represent a large source of uncertainty in future climate predictions. Here, long-term observations of aerosol optical depth, surface level aerosol loading, fire-area burned, and hydrologic simulations are used to show that regional-scale increases in aridity and resulting wildfires have significantly increased summertime aerosol loading in remote high elevation regions of the Intermountain West of the United States. Surface summertime organic aerosol loading and total aerosol optical depth were both strongly correlated (p < 0.05) with aridity and fire area burned at high elevation sites across major western US mountain ranges. These results demonstrate that surface-level organic aerosol loading is dominated by summertime wildfires at many high elevation sites. This analysis provides new constraints for climate projections on the influence of drought and resulting wildfires on aerosol loading. These empirical observations will help better constrain projected increases in organic aerosol loading with increased fire activity under climate change
Identification of atmospheric organic matter in supercooled cloud water using ultrahigh-resolution FT-ICR mass spectrometry
In the atmosphere, clouds act as a medium where gaseous and particulate phase substances can react to alter the composition of atmospheric organic matter (AOM). To investigate the composition of AOM in cloud water, samples of supercooled clouds were collected at the Storm Peak Laboratory in Colorado (3220 m asl). AOM was isolated using a reverse phase extraction procedure and analyzed by electrospray ionization ultrahigh-resolution FT-ICR mass spectrometry. Chemical formulas for more than 5000 individual masses were assigned in the range of 100- 800 u. The AOM compounds contained a wide number of species with organic nitrogen and organic sulfur. The most abundant compounds were the ones with carbon number 1-20, with DBE range 0-6. The oxidation state of carbon for AOM compounds ranged from -2 to 3 with a mean value of -0.32. The exact masses and identified chemical formulas of cloud water AOM will be presented
Wildfire activity is driving summertime air quality degradation across the western US: a model-based attribution to smoke source regions
Over recent decades, wildfire activity across western North America has increased in concert with summertime air quality degradation in western US urban centers. Using a Lagrangian atmospheric modeling framework to simulate smoke transport for almost 20 years, we quantitatively link decadal scale air quality trends with regional wildfire activity. Modeled smoke concentrations correlate well with observed fine-mode aerosol (PM _2.5 ) concentrations (R > 0.8) at the urban centers most impacted by smoke, supporting attribution of observed trends to wildfire sources. Many western US urban centers (23 of 33 total) exhibit statistically significant trends toward enhanced, wildfire-driven, extreme (98th quantile) air quality episodes during the months of August and September for the years 2003â2020. In the most extreme cases, trends in 98th quantile PM _2.5 exceed 2 ÎŒ g m ^â3 yr ^â1 , with such large trends clustering in the Pacific Northwest and Northern/Central California. We find that the Pacific Northwest is uniquely impacted by smoke from wildfires in the mountainous Pacific Northwest, California, and British Columbia, leading to especially robust degradation of air quality. Summertime PM _2.5 trends in California and the Intermountain West are largely explained by wildfires in mountainous California and the American Rockies, respectively. These results may inform regional scale forest management efforts, and they present significant implications for understanding the wildfireâair quality connection in the context of climate driven trends toward enhanced wildfire activity and subsequent human exposure to degraded air quality
Water-soluble organic compounds at a mountain-top site in Colorado, USA
Water extracts of atmospheric particulate matter (PM2.5) collected at the Storm Peak Laboratory (SPL) (3210 MSL, 40.45° N, 106.74° W) were analyzed for a wide variety of polar organic compounds. The unique geographical character of SPL allows for extended observations/sampling of the free tropospheric interface. Under variable meteorological conditions between January 9th and January14th 2007, the most abundant compounds were levoglucosan (9â72 ng mâ3), palmitic acid (10â40 ng mâ3) and succinic acid (18â27 ng mâ3). Of 84 analytes included in the GCâMS method, over 50 individual water extractable polar organic compounds (POC) were present at concentrations greater than 0.1 ng mâ3. During a snow event (Jan. 11thâ13th), the concentrations of several presumed atmospheric transformation compounds (dicarboxylic acids) were reduced. Lower actinic flux, reduced transport distance, and ice crystal scavenging may explain this variability. Diurnal averages over the sampling period revealed a higher total concentration of water extractable POC at night, 211 ng mâ3 (105â265 ng mâ3), versus day, 160 ng mâ3 (137â205 ng mâ3), which suggests a more aged nighttime aerosol character. This may be due to the increased daytime convective mixing of local primary emissions from the Yampa Valley. XAD resin extracts revealed a gas-phase partitioning of several compounds, and analysis of cloud water collected at this site in 2002 revealed a similar compound abundance trend. Levoglucosan, a wood smoke tracer was generally found to be the most abundant compound in both aerosol and cloud water samples. Variations in meteorological parameters and local/regional transport analysis play an important interpretive role in understanding these results