15,063 research outputs found
Emergent orbitals in the cluster Mott insulator on a breathing Kagome lattice
Motivated by the recent developments on cluster Mott insulating materials
such as the cluster magnet LiZnMoO, we consider the strong
plaquette charge ordered regime of the extended Hubbard model on a breathing
Kagome lattice and reveal the properties of the cluster Mottness. The plaquette
charge order arises from the inter-site charge interaction and the collective
motion of three localized electrons on the hexagon plaquettes. This model leads
naturally to a reduction of the local moments by 2/3 as observed in
LiZnMoO. Furthermore, at low temperatures each hexagon plaquette
contains an extra orbital-like degree of freedom in addition to the remaining
spin 1/2. We explore the consequence of this emergent orbital degree of
freedom. We point out the interaction between the local moments is naturally
described by a Kugel-Khomskii spin-orbital model. We develop a parton approach
and suggest a spin liquid ground state with spinon Fermi surfaces for this
model. We further predict an emergent orbital order when the system is under a
strong magnetic field. Various experimental consequences for
LiZnMoO are discussed, including an argument that the charge
ordering much be short ranged if the charge per Mo is slightly off
stoichiometry.Comment: 12 pages, 13 figure
Detecting topological order in a ground state wave function
A large class of topological orders can be understood and classified using
the string-net condensation picture. These topological orders can be
characterized by a set of data (N, d_i, F^{ijk}_{lmn}, \delta_{ijk}). We
describe a way to detect this kind of topological order using only the ground
state wave function. The method involves computing a quantity called the
``topological entropy'' which directly measures the quantum dimension D =
\sum_i d^2_i.Comment: 4 pages, 5 figures, homepage http://dao.mit.edu/~we
An A4 x Z4 model for neutrino mixing
The A4 x U(1) flavor model of He, Keum, and Volkas is extended to provide a
minimal modification to tribimaximal mixing that accommodates a nonzero reactor
angle theta13 ~ 0.1. The sequestering problem is circumvented by forbidding
superheavy scales and large coupling constants which would otherwise generate
sizable RG flows. The model is compatible with (but does not require) a stable
or metastable dark matter candidate in the form of a complex scalar field with
unit charge under a discrete subgroup Z4 of the U(1) flavor symmetry.Comment: v2: version to be published in JHE
Towards a four-loop form factor
The four-loop, two-point form factor contains the first non-planar correction
to the lightlike cusp anomalous dimension. This anomalous dimension is a
universal function which appears in many applications. Its planar part in N = 4
SYM is known, in principle, exactly from AdS/CFT and integrability while its
non-planar part has been conjectured to vanish. The integrand of the form
factor of the stress-tensor multiplet in N = 4 SYM including the non-planar
part was obtained in previous work. We parametrise the difficulty of
integrating this integrand. We have obtained a basis of master integrals for
all integrals in the four-loop, two-point class in two ways. First, we computed
an IBP reduction of the integrand of the N = 4 form factor using massive
computer algebra (Reduze). Second, we computed a list of master integrals based
on methods of the Mint package, suitably extended using Macaulay2 / Singular.
The master integrals obtained in both ways are consistent with some minor
exceptions. The second method indicates that the master integrals apply beyond
N = 4 SYM, in particular to QCD. The numerical integration of several of the
master integrals will be reported and remaining obstacles will be outlinedComment: 9 Pages, Radcor/Loopfest 2015 Proceeding
Online Local Learning via Semidefinite Programming
In many online learning problems we are interested in predicting local
information about some universe of items. For example, we may want to know
whether two items are in the same cluster rather than computing an assignment
of items to clusters; we may want to know which of two teams will win a game
rather than computing a ranking of teams. Although finding the optimal
clustering or ranking is typically intractable, it may be possible to predict
the relationships between items as well as if you could solve the global
optimization problem exactly.
Formally, we consider an online learning problem in which a learner
repeatedly guesses a pair of labels (l(x), l(y)) and receives an adversarial
payoff depending on those labels. The learner's goal is to receive a payoff
nearly as good as the best fixed labeling of the items. We show that a simple
algorithm based on semidefinite programming can obtain asymptotically optimal
regret in the case where the number of possible labels is O(1), resolving an
open problem posed by Hazan, Kale, and Shalev-Schwartz. Our main technical
contribution is a novel use and analysis of the log determinant regularizer,
exploiting the observation that log det(A + I) upper bounds the entropy of any
distribution with covariance matrix A.Comment: 10 page
Doping a Mott Insulator: Physics of High Temperature Superconductivity
This article reviews the effort to understand the physics of high temperature
superconductors from the point of view of doping a Mott insulator. The basic
electronic structure of the cuprates is reviewed, emphasizing the physics of
strong correlation and establishing the model of a doped Mott insulator as a
starting point. A variety of experiments are discussed, focusing on the region
of the phase diagram close to the Mott insulator (the underdoped region) where
the behavior is most anomalous. We introduce Anderson's idea of the resonating
valence bond (RVB) and argue that it gives a qualitative account of the data.
The importance of phase fluctuation is discussed, leading to a theory of the
transition temperature which is driven by phase fluctuation and thermal
excitation of quasiparticles. We then describe the numerical method of
projected wavefunction which turns out to be a very useful technique to
implement the strong correlation constraint, and leads to a number of
predictions which are in agreement with experiments. The remainder of the paper
deals with an analytic treatment of the t-J model, with the goal of putting the
RVB idea on a more formal footing. The slave-boson is introduced to enforce the
constraint of no double occupation. The implementation of the local constraint
leads naturally to gauge theories. We give a rather thorough discussion of the
role of gauge theory in describing the spin liquid phase of the undoped Mott
insulator. We next describe the extension of the SU(2) formulation to nonzero
doping. We show that inclusion of gauge fluctuation provides a reasonable
description of the pseudogap phase.Comment: 69 pages, 36 fgiures. Submitted to Rev. Mod. Phy
Color-Octet Contribution and Direct CP Violation in
We study color-octet contribution to . When
this contribution is included, the theoretical predictions for the branching
ratios become in much better agreement with the experiment. This mechanism also
enhances the partial rate asymmetries by about a factor of five. The inclusive
resulting from gluon can have asymmetry around a few
percent whereas those from gluon has it around .
The asymmetry in the former modes should be observable, to a significance of
, with about mesons.Comment: 12 pages, Revtex, Three figure
- …
