180 research outputs found
Modeling networks of spiking neurons as interacting processes with memory of variable length
We consider a new class of non Markovian processes with a countable number of
interacting components, both in discrete and continuous time. Each component is
represented by a point process indicating if it has a spike or not at a given
time. The system evolves as follows. For each component, the rate (in
continuous time) or the probability (in discrete time) of having a spike
depends on the entire time evolution of the system since the last spike time of
the component. In discrete time this class of systems extends in a non trivial
way both Spitzer's interacting particle systems, which are Markovian, and
Rissanen's stochastic chains with memory of variable length which have finite
state space. In continuous time they can be seen as a kind of Rissanen's
variable length memory version of the class of self-exciting point processes
which are also called "Hawkes processes", however with infinitely many
components. These features make this class a good candidate to describe the
time evolution of networks of spiking neurons. In this article we present a
critical reader's guide to recent papers dealing with this class of models,
both in discrete and in continuous time. We briefly sketch results concerning
perfect simulation and existence issues, de-correlation between successive
interspike intervals, the longtime behavior of finite non-excited systems and
propagation of chaos in mean field systems
Kalikow-type decomposition for multicolor infinite range particle systems
We consider a particle system on with real state space and
interactions of infinite range. Assuming that the rate of change is continuous
we obtain a Kalikow-type decomposition of the infinite range change rates as a
mixture of finite range change rates. Furthermore, if a high noise condition
holds, as an application of this decomposition, we design a feasible perfect
simulation algorithm to sample from the stationary process. Finally, the
perfect simulation scheme allows us to forge an algorithm to obtain an explicit
construction of a coupling attaining Ornstein's -distance for two
ordered Ising probability measures.Comment: Published in at http://dx.doi.org/10.1214/12-AAP882 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Context Tree Selection: A Unifying View
The present paper investigates non-asymptotic properties of two popular
procedures of context tree (or Variable Length Markov Chains) estimation:
Rissanen's algorithm Context and the Penalized Maximum Likelihood criterion.
First showing how they are related, we prove finite horizon bounds for the
probability of over- and under-estimation. Concerning overestimation, no
boundedness or loss-of-memory conditions are required: the proof relies on new
deviation inequalities for empirical probabilities of independent interest. The
underestimation properties rely on loss-of-memory and separation conditions of
the process.
These results improve and generalize the bounds obtained previously. Context
tree models have been introduced by Rissanen as a parsimonious generalization
of Markov models. Since then, they have been widely used in applied probability
and statistics
- âŠ