30 research outputs found
Conditional Lower Bounds for Space/Time Tradeoffs
In recent years much effort has been concentrated towards achieving
polynomial time lower bounds on algorithms for solving various well-known
problems. A useful technique for showing such lower bounds is to prove them
conditionally based on well-studied hardness assumptions such as 3SUM, APSP,
SETH, etc. This line of research helps to obtain a better understanding of the
complexity inside P.
A related question asks to prove conditional space lower bounds on data
structures that are constructed to solve certain algorithmic tasks after an
initial preprocessing stage. This question received little attention in
previous research even though it has potential strong impact.
In this paper we address this question and show that surprisingly many of the
well-studied hard problems that are known to have conditional polynomial time
lower bounds are also hard when concerning space. This hardness is shown as a
tradeoff between the space consumed by the data structure and the time needed
to answer queries. The tradeoff may be either smooth or admit one or more
singularity points.
We reveal interesting connections between different space hardness
conjectures and present matching upper bounds. We also apply these hardness
conjectures to both static and dynamic problems and prove their conditional
space hardness.
We believe that this novel framework of polynomial space conjectures can play
an important role in expressing polynomial space lower bounds of many important
algorithmic problems. Moreover, it seems that it can also help in achieving a
better understanding of the hardness of their corresponding problems in terms
of time
Finding Pairwise Intersections Inside a Query Range
We study the following problem: preprocess a set O of objects into a data
structure that allows us to efficiently report all pairs of objects from O that
intersect inside an axis-aligned query range Q. We present data structures of
size and with query time
time, where k is the number of reported pairs, for two classes of objects in
the plane: axis-aligned rectangles and objects with small union complexity. For
the 3-dimensional case where the objects and the query range are axis-aligned
boxes in R^3, we present a data structures of size and query time . When the objects and
query are fat, we obtain query time using storage
Exact Weight Subgraphs and the k-Sum Conjecture
We consider the Exact-Weight-H problem of finding a (not necessarily induced)
subgraph H of weight 0 in an edge-weighted graph G. We show that for every H,
the complexity of this problem is strongly related to that of the infamous
k-Sum problem. In particular, we show that under the k-Sum Conjecture, we can
achieve tight upper and lower bounds for the Exact-Weight-H problem for various
subgraphs H such as matching, star, path, and cycle. One interesting
consequence is that improving on the O(n^3) upper bound for Exact-Weight-4-Path
or Exact-Weight-5-Path will imply improved algorithms for 3-Sum, 5-Sum,
All-Pairs Shortest Paths and other fundamental problems. This is in sharp
contrast to the minimum-weight and (unweighted) detection versions, which can
be solved easily in time O(n^2). We also show that a faster algorithm for any
of the following three problems would yield faster algorithms for the others:
3-Sum, Exact-Weight-3-Matching, and Exact-Weight-3-Star
On a class of O(n²) problems in computational geometry
There are many problems in computational geometry for which the best know algorithms take time (n2) (or more) in the worst case while only very low lower bounds are known. In this paper we describe a large class of problems for which we prove that they are all at least as dicult as the following base problem 3sum: Given a set S of n integers, are there three elements of S that sum up to 0. We call such problems 3sum-hard. The best known algorithm for the base problem takes (n2) time. The class of 3sum-hard problems includes problems like: Given a set of lines in the plane, are there three that meet in a point?; or: Given a set of triangles in the plane, does their union have a hole? Also certain visibility and motion planning problems are shown to be in the class. Although this does not prove a lower bound for these problems, there is no hope of obtaining o(n2) solutions for them unless we can improve the solution for the base problem
Speeding up the incremental construction of the union of geometric objects in practice
We present a new incremental algorithm for constructing the union of n triangles in the plane. In our experiments, the new algorithm, which we call the Disjoint-Cover (DC) algorithm, performs significantly better than the standard randomized incremental construction (RIC) of the union. Our algorithm is rather hard to analyze rigorously, but we provide an initial such analysis, which yields an upper bound on its performance that is expressed in terms of the expected cost of the RIC algorithm. Our approach and analysis generalize verbatim to the construction of the union of other objects in the plane, and, with slight modifications, to three dimensions. We present experiments with a software implementation of our algorithm using the Cgal library of geometric algorithms.