27 research outputs found

    Towards a unified lattice kinetic scheme for relativistic hydrodynamics

    Get PDF
    We present a systematic derivation of relativistic lattice kinetic equations for finite-mass particles, reaching close to the zero-mass ultra-relativistic regime treated in the previous literature. Starting from an expansion of the Maxwell-Juettner distribution on orthogonal polynomials, we perform a Gauss-type quadrature procedure and discretize the relativistic Boltzmann equation on space-filling Cartesian lattices. The model is validated through numerical comparison with standard benchmark tests and solvers in relativistic fluid dynamics such as Boltzmann approach multiparton scattering (BAMPS) and previous relativistic lattice Boltzmann models. This work provides a significant step towards the formulation of a unified relativistic lattice kinetic scheme, covering both massive and near-massless particles regimes

    Kinetic approach to relativistic dissipation

    Get PDF
    Despite a long record of intense efforts, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude a complete understanding. In particular, no unique pathway from kinetic theory to hydrodynamics has been identified as yet, with different approaches leading to different values of the transport coefficients. In this Letter, we approach the problem by matching data from lattice kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favour of the Chapman-Enskog procedure, as suggested by recently theoretical analyses, along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method to capture the emergence of dissipative effects in relativistic fluids

    Energy-efficiency evaluation of Intel KNL for HPC workloads

    Get PDF
    Energy consumption is increasingly becoming a limiting factor to the design of faster large-scale parallel systems, and development of energy-efficient and energy-aware applications is today a relevant issue for HPC code-developer communities. In this work we focus on energy performance of the Knights Landing (KNL) Xeon Phi, the latest many-core architecture processor introduced by Intel into the HPC market. We take into account the 64-core Xeon Phi 7230, and analyze its energy performance using both the on-chip MCDRAM and the regular DDR4 system memory as main storage for the application data-domain. As a benchmark application we use a Lattice Boltzmann code heavily optimized for this architecture and implemented using different memory data layouts to store its lattice. We assessthen the energy consumption using different memory data-layouts, kind of memory (DDR4 or MCDRAM) and number of threads per core

    Probing bulk viscosity in relativistic flows

    Full text link
    We derive an analytical connection between kinetic relaxation rate and bulk viscosity of a relativistic fluid in d spatial dimensions, all the way from the ultra-relativistic down to the near non-relativistic regime. Our derivation is based on both Chapman-Enskog asymptotic expansion and Grad's method of moments. We validate our theoretical results against a benchmark flow, providing further evidence of the correctness of the Chapman-Enskog approach; we define the range of validity of this approach and provide evidence of mounting departures at increasing Knudsen number. Finally, we present numerical simulations of transport processes in quark gluon plasmas, with special focus on the effects of bulk viscosity which might prove amenable to future experimental verification

    Relativistic dissipation obeys Chapman-Enskog asymptotics: analytical and numerical evidence as a basis for accurate kinetic simulations

    Get PDF
    We present an analytical derivation of the transport coefficients of a relativistic gas in (2+1) dimensions for both Chapman-Enskog (CE) asymptotics and Grad's expansion methods. Moreover, we develop a systematic calibration method, connecting the relaxation time of relativistic kinetic theory to the transport parameters of the associated dissipative hydrodynamic equations. Comparison between the analytical results and numerical simulations, shows that the CE method correctly captures dissipative effects, while Grad's method does not. The resulting calibration procedure based on the CE method opens the way to the quantitative kinetic description of dissipative relativistic fluid dynamics under fairly general conditions, namely flows with strongly non-linearities, in non-ideal geometries, across both ultra-relativistic and near-non-relativistic regimes

    Numerical evidence of electron hydrodynamic whirlpools in graphene samples

    Full text link
    We present an extension of recent relativistic Lattice Boltzmann methods based on Gaussian quadratures for the study of fluids in (2+1) dimensions. The new method is applied to the analysis of electron flow in graphene samples subject to electrostatic drive; we show that the flow displays hydro-electronic whirlpools in accordance with recent analytical calculations as well as experimental results

    A Lattice Boltzmann Method for relativistic rarefied flows in (2+1) dimensions

    Get PDF
    We propose an extension to recently developed Relativistic Lattice Boltzmann solvers (RLBM), which allows the simulation of flows close to the free streaming limit. Following previous works Ambruş and Blaga (2018), we use product quadrature rules and select weights and nodes by separately discretizing the radial and the angular components. This procedure facilitates the development of quadrature-based RLBM with increased isotropy levels, thus improving the accuracy of the method for the simulation of flows beyond the hydrodynamic regime. In order to quantify the improvement of this discretization procedure over existing methods, we perform numerical tests of shock waves in one and two spatial dimensions in various kinetic regimes across the hydrodynamic and the free-streaming limits.</p

    Prospects for the detection of electronic pre-turbulence in graphene

    Get PDF
    Based on extensive numerical simulations, accounting for electrostatic interactions and dissipative electron-phonon scattering, we propose experimentally realizable geometries capable of sustaining electronic pre-turbulence in graphene samples. In particular, pre-turbulence is predicted to occur at experimentally attainable values of the Reynolds number between 10 and 50, over a broad spectrum of frequencies between 10 and 100 GHz

    Beyond moments: relativistic Lattice-Boltzmann methods for radiative transport in computational astrophysics

    Full text link
    We present a new method for the numerical solution of the radiative-transfer equation (RTE) in multidimensional scenarios commonly encountered in computational astrophysics. The method is based on the direct solution of the Boltzmann equation via an extension of the Lattice Boltzmann (LB) equation and allows to model the evolution of the radiation field as it interacts with a background fluid, via absorption, emission, and scattering. As a first application of this method, we restrict our attention to a frequency independent ("grey") formulation within a special-relativistic framework, which can be employed also for classical computational astrophysics. For a number of standard tests that consider the performance of the method in optically thin, optically thick and intermediate regimes with a static fluid, we show the ability of the LB method to produce accurate and convergent results matching the analytic solutions. We also contrast the LB method with commonly employed moment-based schemes for the solution of the RTE, such as the M1 scheme. In this way, we are able to highlight that the LB method provides the correct solution for both non-trivial free-streaming scenarios and the intermediate optical-depth regime, for which the M1 method either fails or provides inaccurate solutions. When coupling to a dynamical fluid, on the other hand, we present the first self-consistent solution of the RTE with LB methods within a relativistic-hydrodynamic scenario. Finally, we show that besides providing more accurate results in all regimes, the LB method features smaller or comparable computational costs compared to the M1 scheme.Comment: 22 pages, 16 figures, matches version accepted in MNRA
    corecore