6 research outputs found

    Bound-State Variational Wave Equation For Fermion Systems In QED

    Full text link
    We present a formulation of the Hamiltonian variational method for QED which enables the derivation of relativistic few-fermion wave equation that can account, at least in principle, for interactions to any order of the coupling constant. We derive a relativistic two-fermion wave equation using this approach. The interaction kernel of the equation is shown to be the generalized invariant M-matrix including all orders of Feynman diagrams. The result is obtained rigorously from the underlying QFT for arbitrary mass ratio of the two fermions. Our approach is based on three key points: a reformulation of QED, the variational method, and adiabatic hypothesis. As an application we calculate the one-loop contribution of radiative corrections to the two-fermion binding energy for singlet states with arbitrary principal quantum number nn, and l=J=0l =J=0. Our calculations are carried out in the explicitly covariant Feynman gauge.Comment: 26 page

    Variational Derivation of Relativistic Fermion-Antifermion Wave Equations in QED

    Full text link
    We present a variational method for deriving relativistic two-fermion wave equations in a Hamiltonian formulation of QED. A reformulation of QED is performed, in which covariant Green functions are used to solve for the electromagnetic field in terms of the fermion fields. The resulting modified Hamiltonian contains the photon propagator directly. The reformulation permits one to use a simple Fock-space variational trial state to derive relativistic fermion-antifermion wave equations from the corresponding quantum field theory. We verify that the energy eigenvalues obtained from the wave equation agree with known results for positronium.Comment: 25 pages, accepted in Journal of Mathematical Physics (2004

    Variational Two Fermion Wave Equations in QED: Muonium Like Systems

    Full text link
    We consider a reformulation of QED in which covariant Green functions are used to solve for the electromagnetic field in terms of the fermion fields. The resulting modified Hamiltonian contains the photon propagator directly. A simple Fock-state variational trial function is used to derive relativistic two-fermion equations variationally from the expectation value of the Hamiltonian of the field theory. The interaction kernel of the equation is shown to be, in essence, the invariant M-matrix in lowest order. Solutions of the two-body equations are presented for muonium like system for small coupling strengths. The results compare well with the observed muonium spectrum, as well as that for hydrogen and muonic hydrogen. Anomalous magnetic moment effects are discussed

    Analysis of inter-quark interactions in classical chromodynamics

    Full text link
    The QCD gluon equation of motion is solved approximately by means of the Green function. This solution is used to reformulate the Lagrangian of QCD such that the gluon propagator appears directly in the interaction terms of the Lagrangian. The nature of the interactions is discussed. Their coordinate-space form is presented and analyzed in the static, non-relativistic case.Comment: 10 pages, 1 figure, LaTex2
    corecore