4 research outputs found

    Placental growth factor promotes neural invasion and predicts disease prognosis in resectable pancreatic cancer

    Get PDF
    BACKGROUND: Surgery represents the only curative treatment option for pancreatic ductal adenocarcinoma (PDAC), but recurrence in more than 85% of patients limits the success of curative-intent tumor resection. Neural invasion (NI), particularly the spread of tumor cells along nerves into extratumoral regions of the pancreas, constitutes a well-recognized risk factor for recurrence. Hence, monitoring and therapeutic targeting of NI offer the potential to stratify recurrence risk and improve recurrence-free survival. Based on the evolutionary conserved dual function of axon and vessel guidance molecules, we hypothesize that the proangiogenic vessel guidance factor placental growth factor (PlGF) fosters NI. To test this hypothesis, we correlated PlGF with NI in PDAC patient samples and functionally assessed its role for the interaction of tumor cells with nerves. METHODS: Serum levels of PlGF and its soluble receptor sFlt1, and expression of PlGF mRNA transcripts in tumor tissues were determined by ELISA or qPCR in a retrospective discovery and a prospective validation cohort. Free circulating PlGF was calculated from the ratio PlGF/sFlt1. Incidence and extent of NI were quantified based on histomorphometric measurements and separately assessed for intratumoral and extratumoral nerves. PlGF function on reciprocal chemoattraction and directed neurite outgrowth was evaluated in co-cultures of PDAC cells with primary dorsal-root-ganglia neurons or Schwann cells using blocking anti-PlGF antibodies. RESULTS: Elevated circulating levels of free PlGF correlated with NI and shorter overall survival in patients with PDAC qualifying for curative-intent surgery. Furthermore, high tissue PlGF mRNA transcript levels in patients undergoing curative-intent surgery correlated with a higher incidence and greater extent of NI spreading to tumor-distant extratumoral nerves. In turn, more abundant extratumoral NI predicted shorter disease-free and overall survival. Experimentally, PlGF facilitated directional and dynamic changes in neurite outgrowth of primary dorsal-root-ganglia neurons upon exposure to PDAC derived guidance and growth factors and supported mutual chemoattraction of tumor cells with neurons and Schwann cells. CONCLUSION: Our translational results highlight PlGF as an axon guidance factor, which fosters neurite outgrowth and attracts tumor cells towards nerves. Hence, PlGF represents a promising circulating biomarker of NI and potential therapeutic target to improve the clinical outcome for patients with resectable PDAC

    Phenotypic mapping of pathologic cross-talk between glioblastoma and innate immune cells by synthetic genetic tracing

    No full text
    Glioblastoma is a lethal brain tumor that exhibits heterogeneity and resistance to therapy. Our understanding of tumor homeostasis is limited by a lack of genetic tools to selectively identify tumor states and fate transitions. Here, we use glioblastoma subtype signatures to construct synthetic genetic tracing cassettes and investigate tumor heterogeneity at cellular and molecular levels, in vitro and in vivo. Through synthetic locus control regions, we demonstrate that proneural glioblastoma is a hardwired identity, whereas mesenchymal glioblastoma is an adaptive and metastable cell state driven by proinflammatory and differentiation cues and DNA damage, but not hypoxia. Importantly, we discovered that innate immune cells divert glioblastoma cells to a proneural-to-mesenchymal transition that confers therapeutic resistance. Our synthetic genetic tracing methodology is simple, scalable, and widely applicable to study homeostasis in development and diseases. In glioblastoma, the method causally links distinct (micro)environmental, genetic, and pharmacologic perturbations and mesenchymal commitment. SIGNIFICANCE: Glioblastoma is heterogeneous and incurable. Here, we designed synthetic reporters to reflect the transcriptional output of tumor cell states and signaling pathways' activity. This method is generally applicable to study homeostasis in normal tissues and diseases. In glioblastoma, synthetic genetic tracing causally connects cellular and molecular heterogeneity to therapeutic responses
    corecore