3 research outputs found

    Zealots Attack and the Revenge of the Commons: Quality vs Quantity in the Best-of-n

    Get PDF
    © 2020, Springer Nature Switzerland AG. In this paper we study the effect of inflexible individuals with fixed opinions, or zealots, on the dynamics of the best-of-n collective decision making problem, using both the voter model and the majority rule decision mechanisms. We consider two options with different qualities, where the lower quality option is associated to a higher number of zealots. The aim is to study the trade-off between option quality and zealot quantity for two different scenarios: one in which all agents can modulate dissemination of their current opinion proportionally to the option quality, and one in which this capability is only possessed by the zealots. In both scenarios, our goal is to determine in which conditions consensus is more biased towards the high or low quality option, and to determine the indifference curve separating these two regimes. Using both numerical simulations and ordinary differential equation models, we find that: i) if all agents can modulate the dissemination time based on the option quality, then consensus can be driven to the high quality option when the number of zealots for the other option is not too high; ii) if only zealots can modulate the dissemination time based on the option quality, whil e all normal agents cannot distinguish the two options and cannot differentially disseminate, then consensus no longer depends on the quality and is driven to the low quality option by the zealots

    Guerrilla Performance Analysis for Robot Swarms: Degrees of Collaboration and Chains of Interference Events

    No full text
    Scalability is a key feature of swarm robotics. Hence, measuring performance depending on swarm size is important to check the validity of the design. Performance diagrams have generic qualities across many different application scenarios. We summarize these findings and condense them in a practical performance analysis guide for swarm robotics. We introduce three general classes of performance: linear increase, saturation, and increase/decrease. As the performance diagrams may contain rich information about underlying processes, such as the degree of collaboration and chains of interference events in crowded situations, we discuss options for quickly devising hypotheses about the underlying robot behaviors. The validity of our performance analysis guide is then made plausible in a number of simple examples based on models and simulations.SCOPUS: cp.kinfo:eu-repo/semantics/publishe
    corecore