1,549 research outputs found

    Towards a modeling of the time dependence of contact area between solid bodies

    Full text link
    I present a simple model of the time dependence of the contact area between solid bodies, assuming either a totally uncorrelated surface topography, or a self affine surface roughness. The existence of relaxation effects (that I incorporate using a recently proposed model) produces the time increase of the contact area A(t)A(t) towards an asymptotic value that can be much smaller than the nominal contact area. For an uncorrelated surface topography, the time evolution of A(t)A(t) is numerically found to be well fitted by expressions of the form [A(∞)−A(t)]∼(t+t0)−qA(\infty)-A(t)]\sim (t+t_0)^{-q}, where the exponent qq depends on the normal load FNF_N as q∼FNβq\sim F_N^{\beta}, with β\beta close to 0.5. In particular, when the contact area is much lower than the nominal area I obtain A(t)/A(0)∼1+Cln⁡(t/t0+1)A(t)/A(0) \sim 1+C\ln(t/t_0+1), i.e., a logarithmic time increase of the contact area, in accordance with experimental observations. The logarithmic increase for low loads is also obtained analytically in this case. For the more realistic case of self affine surfaces, the results are qualitatively similar.Comment: 18 pages, 9 figure

    Direct metal nano-imprinting using embossed solid electrolyte stamp

    Full text link
    In this paper, we report direct patterning of metal nanostructures using an embossed solid electrochemical stamp. Microforming of solid superionic stamps using Si templates-analogous to polymer patterning in nano-imprint lithography-is explored. Silver sulfide (Ag2S)-a superionic conductor with excellent micro-forming properties-is investigated as a candidate material. Important parameters of the superionic stamp, including mechanical behavior, material flow during forming, and feature recovery after embossing are studied. Excellent feature transferability during embossing as well as etching is observed. To illustrate the capability of this approach silver nano-antennas with gaps <10 nm were successfully fabricated. The possibility for large area patterning with stamp diameters >6 mm is also demonstrated. Embossing based metal patterning allows fabrication beyond two-dimensional nanofabrication and several patterning schemes are reported.Comment: 11 pages (double spaced), 7 figures, 1 table, continuation of work submitted to MRS Spring 200

    A thermal cycling reliability study of ultrasonically bonded copper wires

    Get PDF
    In this work we report on a reliability investigation regarding heavy copper wires ultrasonically bonded onto active braze copper substrates. The results obtained from both a non-destructive approach using 3D X-ray tomography and shear tests showed no discernible degradation or wear out from initial conditions to 2900 passive thermal cycles from − 55 to 125 °C. Instead, an apparent increase in shear strength is observed as the number of thermal cycles increases. Nanoindentation hardness investigations suggest the occurrence of cyclic hardening. Microstructural investigations of the interfacial morphologies before and after cycling and after shear testing are also presented and discussed

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore