7 research outputs found

    Facilitation of Serotonin Signaling by SSRIs is Attenuated by Social Isolation

    No full text
    Hypofunction of the serotonergic system is often associated with major depression and obsessive compulsive disorder (OCD). Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to treat these disorders, and require 3–6 weeks of chronic treatment before improvements in the symptoms are observed. SSRIs inhibit serotonin's transporter, and in doing so, increase extracellular serotonin concentrations. Thus, efficacy of SSRIs likely depends upon the brain's adaptive response to sustained increases in serotonin levels. Individual responsiveness to SSRI treatment may depend on a variety of factors that influence these changes, including ongoing stress. Social isolation is a passive, naturalistic form of chronic mild stress that can model depression in rodents. In this study, we examined how 20-day treatment with the SSRI citalopram (CIT) alters marble-burying (MB), open field behavior, and serotonin signaling in single- vs pair-housed animals. We used in vivo voltammetry to measure electrically evoked serotonin, comparing release rate, net overflow, and clearance. Pair-housed mice were significantly more responsive to CIT treatment, exhibiting reduced MB and facilitation of serotonin release that positively correlated with the frequency of electrical stimulation. These effects of CIT treatment were attenuated in single-housed mice. Notably, although CIT treatment enhanced serotonin release in pair-housed mice, it did not significantly alter uptake rate. In summary, we report that chronic SSRI treatment facilitates serotonin release in a frequency-dependent manner, and this effect is blocked by social isolation. These findings suggest that the efficacy of SSRIs in treating depression and OCD may depend on ongoing stressors during treatment

    Ezetimibe added to statin therapy after acute coronary syndromes

    Get PDF
    BACKGROUND: Statin therapy reduces low-density lipoprotein (LDL) cholesterol levels and the risk of cardiovascular events, but whether the addition of ezetimibe, a nonstatin drug that reduces intestinal cholesterol absorption, can reduce the rate of cardiovascular events further is not known. METHODS: We conducted a double-blind, randomized trial involving 18,144 patients who had been hospitalized for an acute coronary syndrome within the preceding 10 days and had LDL cholesterol levels of 50 to 100 mg per deciliter (1.3 to 2.6 mmol per liter) if they were receiving lipid-lowering therapy or 50 to 125 mg per deciliter (1.3 to 3.2 mmol per liter) if they were not receiving lipid-lowering therapy. The combination of simvastatin (40 mg) and ezetimibe (10 mg) (simvastatin-ezetimibe) was compared with simvastatin (40 mg) and placebo (simvastatin monotherapy). The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, unstable angina requiring rehospitalization, coronary revascularization ( 6530 days after randomization), or nonfatal stroke. The median follow-up was 6 years. RESULTS: The median time-weighted average LDL cholesterol level during the study was 53.7 mg per deciliter (1.4 mmol per liter) in the simvastatin-ezetimibe group, as compared with 69.5 mg per deciliter (1.8 mmol per liter) in the simvastatin-monotherapy group (P<0.001). The Kaplan-Meier event rate for the primary end point at 7 years was 32.7% in the simvastatin-ezetimibe group, as compared with 34.7% in the simvastatin-monotherapy group (absolute risk difference, 2.0 percentage points; hazard ratio, 0.936; 95% confidence interval, 0.89 to 0.99; P = 0.016). Rates of pre-specified muscle, gallbladder, and hepatic adverse effects and cancer were similar in the two groups. CONCLUSIONS: When added to statin therapy, ezetimibe resulted in incremental lowering of LDL cholesterol levels and improved cardiovascular outcomes. Moreover, lowering LDL cholesterol to levels below previous targets provided additional benefit
    corecore