54 research outputs found

    Scalable Semidefinite Programming

    Get PDF
    Semidefinite programming (SDP) is a powerful framework from convex optimization that has striking potential for data science applications. This paper develops a provably correct algorithm for solving large SDP problems by economizing on both the storage and the arithmetic costs. Numerical evidence shows that the method is effective for a range of applications, including relaxations of MaxCut, abstract phase retrieval, and quadratic assignment. Running on a laptop, the algorithm can handle SDP instances where the matrix variable has over 10¹³ entries

    Scalable Semidefinite Programming

    Full text link
    Semidefinite programming (SDP) is a powerful framework from convex optimization that has striking potential for data science applications. This paper develops a provably correct randomized algorithm for solving large, weakly constrained SDP problems by economizing on the storage and arithmetic costs. Numerical evidence shows that the method is effective for a range of applications, including relaxations of MaxCut, abstract phase retrieval, and quadratic assignment. Running on a laptop equivalent, the algorithm can handle SDP instances where the matrix variable has over 101410^{14} entries

    Multimodal decoding of human liver regeneration

    Get PDF
    The liver has a unique ability to regenerate1,2; however, in the setting of acute liver failure (ALF), this regenerative capacity is often overwhelmed, leaving emergency liver transplantation as the only curative option3-5. Here, to advance understanding of human liver regeneration, we use paired single-nucleus RNA sequencing combined with spatial profiling of healthy and ALF explant human livers to generate a single-cell, pan-lineage atlas of human liver regeneration. We uncover a novel ANXA2+ migratory hepatocyte subpopulation, which emerges during human liver regeneration, and a corollary subpopulation in a mouse model of acetaminophen (APAP)-induced liver regeneration. Interrogation of necrotic wound closure and hepatocyte proliferation across multiple timepoints following APAP-induced liver injury in mice demonstrates that wound closure precedes hepatocyte proliferation. Four-dimensional intravital imaging of APAP-induced mouse liver injury identifies motile hepatocytes at the edge of the necrotic area, enabling collective migration of the hepatocyte sheet to effect wound closure. Depletion of hepatocyte ANXA2 reduces hepatocyte growth factor-induced human and mouse hepatocyte migration in vitro, and abrogates necrotic wound closure following APAP-induced mouse liver injury. Together, our work dissects unanticipated aspects of liver regeneration, demonstrating an uncoupling of wound closure and hepatocyte proliferation and uncovering a novel migratory hepatocyte subpopulation that mediates wound closure following liver injury. Therapies designed to promote rapid reconstitution of normal hepatic microarchitecture and reparation of the gut-liver barrier may advance new areas of therapeutic discovery in regenerative medicine

    Multimodal decoding of human liver regeneration

    Get PDF
    The liver has a unique ability to regenerate 1,2; however, in the setting of acute liver failure (ALF), this regenerative capacity is often overwhelmed, leaving emergency liver transplantation as the only curative option 3-5. Here, to advance understanding of human liver regeneration, we use paired single-nucleus RNA sequencing combined with spatial profiling of healthy and ALF explant human livers to generate a single-cell, pan-lineage atlas of human liver regeneration. We uncover a novel ANXA2 + migratory hepatocyte subpopulation, which emerges during human liver regeneration, and a corollary subpopulation in a mouse model of acetaminophen (APAP)-induced liver regeneration. Interrogation of necrotic wound closure and hepatocyte proliferation across multiple timepoints following APAP-induced liver injury in mice demonstrates that wound closure precedes hepatocyte proliferation. Four-dimensional intravital imaging of APAP-induced mouse liver injury identifies motile hepatocytes at the edge of the necrotic area, enabling collective migration of the hepatocyte sheet to effect wound closure. Depletion of hepatocyte ANXA2 reduces hepatocyte growth factor-induced human and mouse hepatocyte migration in vitro, and abrogates necrotic wound closure following APAP-induced mouse liver injury. Together, our work dissects unanticipated aspects of liver regeneration, demonstrating an uncoupling of wound closure and hepatocyte proliferation and uncovering a novel migratory hepatocyte subpopulation that mediates wound closure following liver injury. Therapies designed to promote rapid reconstitution of normal hepatic microarchitecture and reparation of the gut-liver barrier may advance new areas of therapeutic discovery in regenerative medicine. </p

    Distributed Block Coordinate Descent for Minimizing Partially Separable Functions

    Get PDF
    In this work we propose a distributed randomized block coordinate descent method for minimizing a convex function with a huge number of variables/coordinates. We analyze its complexity under the assumption that the smooth part of the objective function is partially block separable, and show that the degree of separability directly influences the complexity. This extends the results in [Richtarik, Takac: Parallel coordinate descent methods for big data optimization] to a distributed environment. We first show that partially block separable functions admit an expected separable overapproximation (ESO) with respect to a distributed sampling, compute the ESO parameters, and then specialize complexity results from recent literature that hold under the generic ESO assumption. We describe several approaches to distribution and synchronization of the computation across a cluster of multi-core computers and provide promising computational results.Comment: in Recent Developments in Numerical Analysis and Optimization, 201

    Uridine phosphorylase-1 supports metastasis by altering immune and extracellular matrix landscapes

    Get PDF
    Understanding mechanisms that facilitate early events in metastatic seeding is key to developing therapeutic approaches to reduce metastasis. Here we identify uracil as a metastasis-associated metabolite in genetically engineered mouse models of cancer and in patients with metastatic breast cancer. Uracil is generated by the enzyme uridine phosphorylase-1 (UPP1), and we find that neutrophils are a significant source of UPP1 in metastatic cancer. Mammary tumours increase expression of adhesion molecules on the neutrophil surface, in a UPP1-dependent manner, leading to decreased neutrophil motility in the pre-metastatic lung. UPP1-expressing neutrophils suppress T-cell proliferation, and the UPP1 product uracil increases fibronectin deposition in the extracellular microenvironment. Knockout or inhibition of UPP1 in mice with mammary tumours increases T-cell numbers and reduces fibronectin content in the lung, and decreases the proportion of mice that develop lung metastasis. These data indicate that UPP1 influences neutrophil behaviour and extracellular matrix deposition in the lung, and suggest that circulating uracil could be a marker of metastasis, and that pharmacological inhibition of UPP1 could be a strategy to reduce recurrence

    CXCR2 inhibition enables NASH-HCC immunotherapy

    Get PDF
    Objective: Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. Design: Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. Results: Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. Conclusion: CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC
    corecore