717 research outputs found
Phonon-modulated magnetic interactions and spin Tomonaga-Luttinger liquid in the p-orbital antiferromagnet CsO2
The magnetic response of antiferromagnetic CsO2, coming from the p-orbital
S=1/2 spins of anionic O2- molecules, is followed by 133Cs nuclear magnetic
resonance across the structural phase transition occuring at Ts1=61 K on
cooling. Above Ts1, where spins form a square magnetic lattice, we observe a
huge, nonmonotonic temperature dependence of the exchange coupling originating
from thermal librations of O2- molecules. Below Ts1, where antiferromagnetic
spin chains are formed as a result of p-orbital ordering, we observe a spin
Tomonaga-Luttinger-liquid behavior of spin dynamics. These two interesting
phenomena, which provide rare simple manifestations of the coupling between
spin, lattice and orbital degrees of freedom, establish CsO2 as a model system
for molecular solids.Comment: 9 pages, 5 figures (with Supplemental Material), to appear in
Physical Review Letter
Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy
Resonant ultrasound spectroscopy and magnetic susceptibility experiments have
been used to characterize strain coupling phenomena associated with structural
and magnetic properties of the shape-memory Heusler alloy series
NiMnGa (, 2.5, 5.0, and 7.5). All samples exhibit
a martensitic transformation at temperature and ferromagnetic ordering at
temperature , while the pure end member () also has a premartensitic
transition at , giving four different scenarios: ,
without premartensitic transition, , and .
Fundamental differences in elastic properties i.e., stiffening versus
softening, are explained in terms of coupling of shear strains with three
discrete order parameters relating to magnetic ordering, a soft mode and the
electronic instability responsible for the large strains typical of martensitic
transitions. Linear-quadratic or biquadratic coupling between these order
parameters, either directly or indirectly via the common strains, is then used
to explain the stabilities of the different structures. Acoustic losses are
attributed to critical slowing down at the premartensite transition, to the
mobility of interphases between coexisting phases at the martensitic transition
and to mobility of some aspect of the twin walls under applied stress down to
the lowest temperatures at which measurements were made.Comment: 9 pages, 5 figure
Two-channel conduction in YbPtBi
We investigated transport, magnetotransport, and broadband optical properties
of the half-Heusler compound YbPtBi. Hall measurements evidence two types of
charge carriers: highly mobile electrons with a temperature-dependent
concentration and low-mobile holes; their concentration stays almost constant
within the investigated temperature range from 2.5 to 300 K. The optical
spectra (10 meV - 2.7 eV) can be naturally decomposed into contributions from
intra- and interband absorption processes, the former manifesting themselves as
two Drude bands with very different scattering rates, corresponding to the
charges with different mobilities. These results of the optical measurements
allow us to separate the contributions from electrons and holes to the total
conductivity and to implement a two-channel-conduction model for description of
the magnetotransport data. In this approach, the electron and hole mobilities
are found to be around 50000 and 10 cm/Vs at the lowest temperatures (2.5
K), respectively.Comment: 6 page
Linear-in-frequency optical conductivity in GdPtBi due to transitions near the triple points
The complex optical conductivity of the half-Heusler compound GdPtBi is
measured in a frequency range from 20 to 22 000 cm (2.5 meV - 2.73 eV)
at temperatures down to 10 K in zero magnetic field. We find the real part of
the conductivity, , to be almost perfectly linear in
frequency over a broad range from 50 to 800 cm ( 6 - 100 meV) for
K. This linearity strongly suggests the presence of
three-dimensional linear electronic bands with band crossings (nodes) near the
chemical potential. Band-structure calculations show the presence of triple
points, where one doubly degenerate and one nondegenerate band cross each other
in close vicinity of the chemical potential. From a comparison of our data with
the optical conductivity computed from the band structure, we conclude that the
observed nearly linear originates as a cumulative effect
from all the transitions near the triple points.Comment: 5+ pages, 5 figures, band-structure and optical-conductivity
calculations adde
One-dimensional quantum antiferromagnetism in the orbital CsO compound revealed by electron paramagnetic resonance
Recently it was proposed that the orbital ordering of molecular
orbitals in the superoxide CsO compound leads to the formation of spin-1/2
chains below the structural phase transition occuring at ~K on
cooling. Here we report a detailed X-band electron paramagnetic resonance (EPR)
study of this phase in CsO powder. The EPR signal appears as a broad line
below , which is replaced by the antiferromagnetic resonance below
the N\'{e}el temperature ~K. The temperature dependence of the
EPR linewidth between and agrees with the
predictions for the one-dimensional Heisenberg antiferromagnetic chain of
spins in the presence of symmetric anisotropic exchange interaction.
Complementary analysis of the EPR lineshape, linewidth and the signal intensity
within the Tomonaga-Luttinger liquid (TLL) framework allows for a determination
of the TLL exponent . Present EPR data thus fully comply with the
quantum antiferromagnetic state of spin-1/2 chains in the orbitally ordered
phase of CsO, which is, therefore, a unique orbital system where such a
state could be studied.Comment: 6 pages, 3 figure
Large zero-field cooled exchange-bias in bulk Mn2PtGa
We report a large exchange-bias (EB) effect after zero-field cooling the new
tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The
first-principle calculation and the magnetic measurements reveal that Mn2PtGa
orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that
ferrimagnetic (FI) ordering is essential to isothermally induce the exchange
anisotropy needed for the zero-field cooled (ZFC) EB during the virgin
magnetization process. The complex magnetic behavior at low temperatures is
characterized by the coexistence of a field induced irreversible magnetic
behavior and a spin-glass-like phase. The field induced irreversibility
originates from an unusual first-order FI to antiferromagnetic transition,
whereas, the spin-glass like state forms due to the existence of anti-site
disorder intrinsic to the material.Comment: 5 pages, 4 figures, supplementary material included in a separate
file; accepted for publication in PR
Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy NiMnIn
We have studied the magnetocaloric effect (MCE) in the shape-memory Heusler
alloy NiMnIn by direct measurements in pulsed magnetic
fields up to 6 and 20 T. The results in 6 T are compared with data obtained
from heat-capacity experiments. We find a saturation of the inverse MCE,
related to the first-order martensitic transition, with a maximum adiabatic
temperature change of K at 250 K and a conventional
field-dependent MCE near the second-order ferromagnetic transition in the
austenitic phase. The pulsed magnetic field data allow for an analysis of the
temperature response of the sample to the magnetic field on a time scale of
to 100 ms which is on the order of typical operation frequencies (10
to 100 Hz) of magnetocaloric cooling devices. Our results disclose that in
shape-memory alloys the different contributions to the MCE and hysteresis
effects around the martensitic transition have to be carefully considered for
future cooling applications.Comment: 5 pages, 4 figure
- …