173 research outputs found
On the reorientation transition of ultra-thin Ni/Cu(001) films
The reorientation transition of the magnetization of ferromagnetic films is
studied on a microscopic basis within a Heisenberg spin model. Using a modified
mean field formulation it is possible to calculate properties of magnetic thin
films with non-integer thicknesses. This is especially important for the
reorientation transition in Ni/Cu(001), as there the magnetic properties are a
sensitive function of the film thickness. Detailed phase diagrams in the
thickness-temperature plane are calculated using experimental parameters and
are compared with experimental measurements by Baberschke and Farle (J. Appl.
Phys. 81, 5038 (1997)).Comment: 7 pages(LaTeX2e) with one figure(eps), accepted for publication in
JMMM. See also http://www.thp.Uni-Duisburg.DE/Publikationen/Publist_Us_R.htm
ORIENTATED FePt NANOCRYSTALS DEPOSITED ON POROUS SILICON
FePt nanocrystals with L10 chemical order have high magnetic anisotropy. To form the hard magnetic L10 phase as prepared fcc FePt nanocrystals need to be heated to 600°C. We demonstrate that the morphology of chemically etched porous silicon (PS) substrates and the presence of a magnetic field during the annealing process (600 °C, 1 h) affect the particle arrangement and orientation. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) show the presence of the L10 ordered FePt particles (average diameter 15 nm) uniformly distributed on the substrate. The presence of perpendicular magnetic field during annealing increases the order parameter degree of L10 FePt NPs. These effects can be investigated from variations of the XRD peaks intensity ratio. Presence of magnetic field of 20mT in the perpendicular direction to the substrate surface increases the (001) peak intensity ratio with respect to (111) peak from 0.27 to 0.58. This effect is due to the superlattice formation at (001) direction
Characteristics of 5M modulated martensite in Ni-Mn-Ga magnetic shape memory alloys
The applicability of the magnetic shape memory effect in Ni-Mn-based martensitic Heusler alloys is closely related to the nature of the crystallographically modulated martensite phase in these materials. We study the properties of modulated phases as a function of temperature and composition in three magnetic shape memory alloys Ni 49.8Mn25.0Ga25.2, Ni 49.8Mn27.1Ga23.1 and Ni 49.5Mn28.6Ga21.9. The effect of substituting Ga for Mn leads to an anisotropic expansion of the lattice, where the b-parameter of the 5M modulated structure increases and the a and c-parameters decrease with increasing Ga concentration. The modulation vector is found to be both temperature and composition dependent. The size of the modulation vector corresponds to an incommensurate structure for Ni 49.8Mn25.0Ga25.2 at all temperatures. For the other samples the modulation is incommensurate at low temperatures but reaches a commensurate value of q ≈ 0.400 close to room temperature. The results show that commensurateness of the 5M modulated structure is a special case of incommensurate 5M at a particular temperature
Magnetic phase transitions in Ta/CoFeB/MgO multilayers
We study thin films and magnetic tunnel junction nanopillars based on
Ta/CoFeB/MgO multilayers by electrical transport and
magnetometry measurements. These measurements suggest that an ultrathin
magnetic oxide layer forms at the CoFeB/MgO interface. At
approximately 160 K, the oxide undergoes a phase transition from an insulating
antiferromagnet at low temperatures to a conductive weak ferromagnet at high
temperatures. This interfacial magnetic oxide is expected to have significant
impact on the magnetic properties of CoFeB-based multilayers used in spin
torque memories
Prediction of a surface state and a related surface insulator-metal transition for the (100) surface of stochiometric EuO
We calculate the temperature and layer-dependent electronic structure of a
20-layer EuO(100)-film using a combination of first-principles and model
calculation based on the ferromagnetic Kondo-lattice model. The results suggest
the existence of a EuO(100) surface state which can lead to a surface
insulator-metal transition.Comment: 9 pages, 5 figures, Phys. Rev. Lett. (in press
Theory of the Spin Reorientation Transition of Ultra-Thin Ferromagnetic Films
The reorientation transition of the magnetization of ferromagnetic films is
studied on a microscopic basis within Heisenberg spin models. Analytic
expressions for the temperature dependent anisotropy are derived from which it
is seen that the reduced magnetization in the film surface at finite
temperatures plays a crucial role for this transition. Detailed phase diagrams
in the temperature-thickness plane are calculated.Comment: 6 pages(LaTeX2e), one figure(eps), accepted for publication in JMM
Anisotropy of ultra-thin ferromagnetic films and the spin reorientation transition
The influence of uniaxial anisotropy and the dipole interaction on the
direction of the magnetization of ultra-thin ferromagnetic films in the
ground-state is studied. The ground-state energy can be expressed in terms of
anisotropy constants which are calculated in detail as function of the system
parameters and the film thickness. In particular non-collinear spin
arrangements are taken into account. Conditions for the appearance of a spin
reorientation transition are given and analytic results for the width of the
canted phase and its shift in applied magnetic fields associated with this
transition are derived.Comment: 6 pages, RevTeX
Electron Spin Resonance of the ferromagnetic Kondo lattice CeRuPO
The spin dynamics of the ferromagnetic Kondo lattice CeRuPO is investigated
by Electron Spin Resonance (ESR) at microwave frequencies of 1, 9.4, and
34~GHz. The measured resonance can be ascribed to a rarely observed bulk Ce3+
resonance in a metallic Ce compound and can be followed below the ferromagnetic
transition temperature Tc=14 K. At T>Tc the interplay between the RKKY-exchange
interaction and the crystal electric field anisotropy determines the ESR
parameters. Near Tc the spin relaxation rate is influenced by the critical
fluctuations of the order parameter.Comment: This is an article accepted for publication in Journal of Physics:
Condensed Matte
Magnetoelastic mechanism of spin-reorientation transitions at step-edges
The symmetry-induced magnetic anisotropy due to monoatomic steps at strained
Ni films is determined using results of first - principles relativistic
full-potential linearized augmented plane wave (FLAPW) calculations and an
analogy with the N\'eel model. We show that there is a magnetoelastic
anisotropy contribution to the uniaxial magnetic anisotropy energy in the
vicinal plane of a stepped surface. In addition to the known spin-direction
reorientation transition at a flat Ni/Cu(001) surface, we propose a
spin-direction reorientation transition in the vicinal plane for a stepped
Ni/Cu surface due to the magnetoelastic anisotropy. We show that with an
increase of Ni film thickness, the magnetization in the vicinal plane turns
perpendicular to the step edge at a critical thickness calculated to be in the
range of 16-24 Ni layers for the Ni/Cu(1,1,13) stepped surface.Comment: Accepted for publication in Phys. Rev.
Preparation and properties of nanostructured magnetic hollow microspheres: experiment and simulation
- …