242 research outputs found

    Numerical Modeling of Pulse Wave Propagation in a Stenosed Artery using Two-Way Coupled Fluid Structure Interaction (FSI)

    Full text link
    As the heart beats, it creates fluctuation in blood pressure leading to a pulse wave that propagates by displacing the arterial wall. These waves travel through the arterial tree and carry information about the medium that they propagate through as well as information of the geometry of the arterial tree. Pulse wave velocity (PWV) can be used as a non-invasive diagnostic tool to study the functioning of cardiovascular system. A stenosis in an artery can dampen the pulse wave leading to changes in the propagating pulse. Hence, PWV analysis can be performed to detect a stenosed region in arteries. This paper presents a numerical study of pulse wave propagation in a stenosed artery by means of two-way coupled fluid structure interaction (FSI). The computational model was validated by the comparison of the simulated PWV results with theoretical values for a healthy artery. Propagation of the pulse waves in the stenosed artery was compared with healthy case using spatiotemporal maps of wall displacements. The analysis for PWV showed significance differences between the healthy and stenosed arteries including damping of propagating waves and generation of high wall displacements downstream the stenosis caused by flow instabilities. This approach can be used to develop patient-specific models that are capable of predicting PWV signatures associated with stenosis changes. The knowledge gained from these models may increase utility of this approach for managing patients at risk of stenosis occurrence

    A varactor tuned branch-line hybrid coupler

    Get PDF
    This paper introduces a novel branch-line 90° hybrid coupler incorporating varactor diodes which allow tuning of the frequency response. A design covering the DCS, PCS and IMT2000 cellular frequency bands (1710-2170 MHz) is presented. Given a varactor tunability of 2.5:1, simulations suggest 20 dB return loss and 3±1 dB coupling is achievable across each transmit and receive sub-band by tuning the varactors. These results offer an improvement over a conventional single-section branch-line hybrid centred at 1950 MHz, and some miniaturisation is also achieved due to the capacitive loading. A prototype is constructed using commercially available varactor diodes, and reasonable agreement between the measured and simulated results is achieved

    Electronically tunable lumped element 90° hybrid coupler

    Get PDF
    A method for tuning the centre frequency of a 3 dB hybrid coupler using varactor diodes is presented. The circuit is suitable for recon-figurable or multifunction transceivers that switch between several narrow frequency bands. A prototype covering the PCS, DCS and IMT2000 cellular bands (1710-2170 MHz) is demonstrated

    The effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field

    Full text link
    The role of spin-orbit interaction on the ground state and thermal entanglement of a Heisenberg XYZ two-qubit system in the presence of an inhomogeneous magnetic field is investigated. For a certain value of spin-orbit parameter DD, the ground state entanglement tends to vanish suddenly and when DD crosses its critical value DcD_c, the entanglement undergoes a revival. The maximum value of the entanglement occurs in the revival region. In finite temperatures there are revival regions in D−TD-T plane. In these regions, entanglement first increases with increasing temperature and then decreases and ultimately vanishes for temperatures above a critical value. This critical temperature is an increasing function of DD, thus the nonzero entanglement can exist for larger temperatures. In addition, the amount of entanglement in the revival region depends on the spin-orbit parameter. Also, the entanglement teleportation via the quantum channel constructed by the above system is investigated and finally the influence of the spin-orbit interaction on the fidelity of teleportation and entanglement of replica state is studied.Comment: Two columns, 9 pages, 8 Fig

    Two dimensional fractional supersymmetric conformal field theories and the two point functions

    Get PDF
    A general two dimensional fractional supersymmetric conformal field theory is investigated. The structure of the symmetries of the theory is studied. Then, applying the generators of the closed subalgebra generated by (L−1,L0,G−1/3)(L_{-1}, L_{0}, G_{-1/3}) and (Lˉ−1,Lˉ0,Gˉ−1/3)(\bar{L}_{-1}, \bar{L}_{0}, \bar{G}_{-1/3}), the two point functions of the component fields of supermultiplets are calculated.Comment: 12 pages, latex, no figure

    Barium strontium titanate thin films on r-plane sapphire

    Get PDF
    This paper presents the microwave properties of barium strontium titanate (BST) thin films on r-plane sapphire substrates. A series of films with thickness 25-400 nm was prepared by pulsed laser deposition (PLD). Microwave properties of the films, including capacitance tunability and loss tangent, were extracted by patterning interdigitated capacitors (IDCs) on the film surface. The highest tunability of 64% was observed in the 200 nm film. These results demonstrate the possibility of integrating BST into the silicon on sapphire process

    Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatio-temporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. In this letter, we describe how the criterion for purely elastic Taylor-Couette instability should be adapted to shear-banding flows. We derive three categories of shear-banding flows with curved streamlines, depending on their stability.Comment: 6 pages, 3 figure

    Potential "ways of thinking" about the shear-banding phenomenon

    Get PDF
    Shear-banding is a curious but ubiquitous phenomenon occurring in soft matter. The phenomenological similarities between the shear-banding transition and phase transitions has pushed some researchers to adopt a 'thermodynamical' approach, in opposition to the more classical 'mechanical' approach to fluid flows. In this heuristic review, we describe why the apparent dichotomy between those approaches has slowly faded away over the years. To support our discussion, we give an overview of different interpretations of a single equation, the diffusive Johnson-Segalman (dJS) equation, in the context of shear-banding. We restrict ourselves to dJS, but we show that the equation can be written in various equivalent forms usually associated with opposite approaches. We first review briefly the origin of the dJS model and its initial rheological interpretation in the context of shear-banding. Then we describe the analogy between dJS and reaction-diffusion equations. In the case of anisotropic diffusion, we show how the dJS governing equations for steady shear flow are analogous to the equations of the dynamics of a particle in a quartic potential. Going beyond the existing literature, we then draw on the Lagrangian formalism to describe how the boundary conditions can have a key impact on the banding state. Finally, we reinterpret the dJS equation again and we show that a rigorous effective free energy can be constructed, in the spirit of early thermodynamic interpretations or in terms of more recent approaches exploiting the language of irreversible thermodynamics.Comment: 14 pages, 6 figures, tutorial revie
    • …
    corecore