31 research outputs found
Impact of mean sea-level rise on the long-term evolution of a mega-nourishment
Mean sea-level rise (MSLR) will induce shoreline recession, increasing the stress on coastal systems of high socio-economic and environmental values. Localized mega-nourishments are meant to alleviate erosion problems by diffusing alongshore over decades and thus feeding adjacent beaches. The 21-st century morphological evolution of the Delfland coast, where the Sand Engine mega-nourishment was built in 2011, was simulated with the Q2Dmorfo model to assess the Sand Engine capacity to protect the area against the effects of MSLR. The calibrated and validated model was forced with historical wave and sea-level data and MSLR projections until 2100 corresponding to different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5). Results show that the Sand Engine diffusive trend will continue in forthcoming decades, with the feeding effect to adjacent beaches being less noticeable from 2050 onward. Superimposed to this alongshore diffusion, MSLR causes the shoreline to recede because of both passive-flooding and a net offshore sediment transport produced by wave reshaping and gravity. The existing feeding asymmetry enforces more sediment transport to the NE than to the SW, causing the former to remain stable whilst the SW shoreline retreats significantly, especially from 2050 onward. Sediment from the Sand Engine does not reach the beaches located more than 6 km to the SW, with a strong shoreline and profile recession in that area, as well as dune erosion. The uncertainties in the results are dominated by those related to the free model parameters up to 2050 whilst uncertainties in MSLR projections prevail from 2050 to 2100
Método de reducción al contorno método de reducción al contorno con superficie libre
La descripción usual del movimiento de un fluido incompresible en régimen potencial, bajo la acción de la gravedad, con su superficie superior libre, viene dada por la ecuación de Laplace -lineal y sin derivadas respecto al tiempo- y unas condiciones de contorno en la superficie libre que generan toda la dependencia temporal y las no-linealidades. En este artículo se presenta una formulación del problema en términos -exclusivamente- de las variables restringidas a la superficie libre. Esta formulación presenta varias ventajas, tanto desde un punto de vista teórico como práctico. Algunas de ellas son puestas de manifiesto mediante el ejemplo de aplicación que presentamos: el cálculo numérico de las frecuencias de resonancia de un recinto con una variación brusca de profundidad
Modeling the long-term diffusion and feeding capability of a mega-nourishment
A morphodynamic model based on the wave-driven alongshore sediment transport, including cross-shore transport in a simplified way and neglecting tides, is presented and applied to the Zandmotor mega-nourishment on the Dutch Delfland coast. The model is calibrated with the bathymetric data surveyed from January 2012 to March 2013 using measured offshore wave forcing. The calibrated model reproduces accurately the surveyed evolution of the shoreline and depth contours until March 2015. According to the long-term modeling using different wave climate scenarios based on historical data, for the next 30-yr period, the Zandmotor will display diffusive behavior, asymmetric feeding to the adjacent beaches, and slow migration to the NE. Specifically, the Zandmotor amplitude will have decayed from 960 m to about 350 m with a scatter of only about 40 m associated to climate variability. The modeled coastline diffusivity during the 3-yr period is 0.0021 m2/s, close to the observed value of 0.0022 m2/s. In contrast, the coefficient of the classical one-line diffusion equation is 0.0052 m2/s. Thus, the lifetime prediction, here defined as the time needed to reduce the initial amplitude by a factor 5, would be 90 yr instead of the classical diffusivity prediction of 35 yr. The resulting asymmetric feeding to adjacent beaches produces 100 m seaward shift at the NE section and 80 m seaward shift at the SW section. Looking at the variability associated to the different wave climates, the migration rate and the slight shape asymmetry correlate with the wave power asymmetry (W vs N waves) while the coastline diffusivity correlates with the proportion of high-angle waves, suggesting that the Dutch coast is near the high-angle wave instability threshold
