112 research outputs found
Endogenous non-retroviral elements in genomes of Aedes mosquitoes and vector competence
Recent extensive (re)emergences of arthropod-borne viruses (arboviruses) such as chikungunya (CHIKV), zika (ZIKV) and dengue (DENV) viruses highlight the role of the epidemic vectors, Aedes aegypti and Aedes albopictus, in their spreading. Differences of vector competence to arboviruses highlight different virus/vector interactions. While both are highly competent to transmit CHIKV (Alphavirus,Togaviridae), only Ae. albopictus is considered as a secondary vector for DENV (Flavivirus, Flaviviridae). Among other factors such as environmental temperature, mosquito antiviral immunity and microbiota, the presence of non-retroviral integrated RNA virus sequences (NIRVS) in both mosquito genomes may modulate the vector competence. Here we review the current knowledge on these elements, highlighting the mechanisms by which they are produced and endogenized into Aedes genomes. Additionally, we describe their involvement in antiviral immunity as a stimulator of the RNA interference pathways and in some rare cases, as producer of viral-interfering proteins. Finally, we mention NIRVS as a tool for understanding virus/vector co-evolution. The recent discovery of endogenized elements shows that virus/vector interactions are more dynamic than previously thought, and genetic markers such as NIRVS could be one of the potential targets to reduce arbovirus transmission
Vector competence of Aedes japonicus for chikungunya and dengue viruses
The Asian bush mosquito Aedes japonicus japonicus (Theobald, 1901) [=Ochlerotatus japonicus (sensu Reinert et al., 2004) =Hulecoeteomyia japonica (sensu Reinert et al., 2006)], has invaded large parts of North America and has recently started to spread in Central-Western Europe. The species is suspected to act as a bridge vector of West Nile virus but nothing or very little is known about its vector competence for Chikungunya and Dengue viruses. Here, we report on experiments of laboratory infections of Ae. japonicus with CHIKV and DENV, demonstrating that the species has a vector potential for both viruses. Considering the high abundance of the species in urban environments and its ability to feed on human, these results plead to include this species when processing risk assessments for mosquito-borne diseases
Population genetic structure of Aedes polynesiensis in the Society Islands of French Polynesia: implications for control using a Wolbachia-based autocidal strategy
Abstract Background Aedes polynesiensis is the primary vector of Wuchereria bancrofti in the South Pacific and an important vector of dengue virus. An improved understanding of the mosquito population genetics is needed for insight into the population dynamics and dispersal, which can aid in understanding the epidemiology of disease transmission and control of the vector. In light of the potential release of a Wolbachia infected strain for vector control, our objectives were to investigate the microgeographical and temporal population genetic structure of A. polynesiensis within the Society Islands of French Polynesia, and to compare the genetic background of a laboratory strain intended for release into its population of origin. Methods A panel of eight microsatellite loci were used to genotype A. polynesiensis samples collected in French Polynesia from 2005-2008 and introgressed A. polynesiensis and Aedes riversi laboratory strains. Examination of genetic differentiation was performed using F-statistics, STRUCTURE, and an AMOVA. BAYESASS was used to estimate direction and rates of mosquito movement. Results FST values, AMOVA, and STRUCTURE analyses suggest low levels of intra-island differentiation from multiple collection sites on Tahiti, Raiatea, and Maupiti. Significant pair-wise FST values translate to relatively minor levels of inter-island genetic differentiation between more isolated islands and little differentiation between islands with greater commercial traffic (i.e., Tahiti, Raiatea, and Moorea). STRUCTURE analyses also indicate two population groups across the Society Islands, and the genetic makeup of Wolbachia infected strains intended for release is similar to that of wild-type populations from its island of origin, and unlike that of A. riversi. Conclusions The observed panmictic population on Tahiti, Raiatea, and Moorea is consistent with hypothesized gene flow occurring between islands that have relatively high levels of air and maritime traffic, compared to that of the more isolated Maupiti and Tahaa. Gene flow and potential mosquito movement is discussed in relation to trials of applied autocidal strategies.</p
Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus.
Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world's population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations to two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination
Pixantrone-rituximab versus gemcitabine-rituximab in relapsed/refractory aggressive non-Hodgkin lymphoma.
UNLABELLED: We describe the rationale and design of the ongoing randomized, active-controlled, multicenter, Phase III study evaluating the efficacy of pixantrone and rituximab versus gemcitabine and rituximab in patients with diffuse large B-cell lymphoma or follicular grade 3 lymphoma, who are ineligible for high-dose chemotherapy and stem cell transplantation, and who failed front-line regimens containing rituximab. The administration schedule is pixantrone 50 mg/m(2) intravenously (iv.) or gemcitabine 1000 mg/m(2) iv. on days 1, 8 and 15, combined with rituximab 375 mg/m(2) iv. on day 1, up to six cycles. Pixantrone has a conditional European marketing approval for monotherapy in adults with multiple relapsed or refractory aggressive B-cell non-Hodgkin lymphoma. Our trial explores the efficacy of combining pixantrone with rituximab and completes postauthorization measures. TRIAL REGISTRATION NUMBER: NCT01321541
Potential of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to transmit yellow fever virus in urban areas in Central Africa
Yellow Fever (YF) remains a major public health issue in Sub-Saharan Africa and South America, despite the availability of an effective vaccine. In Africa, most YF outbreaks are reported in West Africa. However, urban outbreaks occurred in 2016 in both Angola and the Democratic Republic of Congo (DRC), and imported cases were reported in Chinese workers coming back from Africa. In Central Africa, Cameroon and the Republic of Congo host a high proportion of non-vaccinated populations increasing the risk of urban outbreaks. The main vector is Aedes aegypti and possibly, Aedes albopictus, both being anthropophilic and domestic mosquitoes. Here, we provide evidence that both Ae. aegypti and Ae. albopictus in Cameroon and the Republic of Congo are able to transmit Yellow fever virus (YFV) with higher rates of infection, dissemination, and transmission for Ae. aegypti. We conclude that the potential of both Aedes species to transmit YFV could increase the risk of urban YF transmission and urge public health authorities to intensify their efforts to control domestic vectors, and extend vaccine coverage to prevent major YFV outbreak
Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements
Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations
On the Treatment of Airline Travelers in Mathematical Models
The global spread of infectious diseases is facilitated by the ability of infected humans to travel thousands of miles in short time spans, rapidly transporting pathogens to distant locations. Mathematical models of the actual and potential spread of specific pathogens can assist public health planning in the case of such an event. Models should generally be parsimonious, but must consider all potentially important components of the system to the greatest extent possible. We demonstrate and discuss important assumptions relative to the parameterization and structural treatment of airline travel in mathematical models. Among other findings, we show that the most common structural treatment of travelers leads to underestimation of the speed of spread and that connecting travel is critical to a realistic spread pattern. Models involving travelers can be improved significantly by relatively simple structural changes but also may require further attention to details of parameterization
Dengue 1 Diversity and Microevolution, French Polynesia 2001–2006: Connection with Epidemiology and Clinics
The molecular characterization of 181 serotype 1 Dengue fever (DENV-1) viruses collected regularly during the 2001–2006 period in French Polynesia (FP) from patients experiencing various clinical presentations revealed that the virus responsible for the severe 2001 outbreak was introduced from South-East Asia, and evolved under an endemic mode until a new epidemic five years later. The dynamics of DENV-1 epidemics in FP did not follow the model of repeated virus introductions described in other South Pacific islands. They were characterized by a long sustained viral circulation and the absence of new viral introduction over a six-year period. Viral genetic variability was not observed only during outbreaks. In contrast with conventional thinking, a significant part of DENV-1 evolution may occur during endemic periods, and may reflect adaptation to the mosquito vector. However, DENV-1 evolution was globally characterized by strong purifying selection pressures leading to genome conservation, like other DENV serotypes and other arboviruses subject to constraints imposed by the host-vector alternating replication of viruses. Severe cases—dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS)—may be linked to both viral and host factors. For the first time, we report a significant correlation between intra-host viral genetic variability and clinical outcome. Severe cases were characterized by more homogeneous viral populations with lower intra-host genetic variability
- …