211 research outputs found

    Lattice specific heat for the RMIn5_5 (R = Gd, La, Y, M = Co, Rh) compounds: non-magnetic contribution subtraction

    Get PDF
    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn5_5 (M = Co, Rh) and for the non-magnetic YMIn5_5 and LaMIn5_5 (M = Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn5_5 is an excellent approximation to the one of GdCoIn5_5 in the full temperature range, for GdRhIn5_5 we find a better agreement with LaCoIn5_5, in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn5_5 (M = Co, Rh) up to room temperature where it surpasses the value expected from the Dulong-Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations

    Strongly anisotropic spin dynamics in magnetic topological insulators

    Get PDF
    The recent discovery of magnetic topological insulators has opened new avenues to explore exotic states of matter that can emerge from the interplay between topological electronic states and magnetic degrees of freedom, be it ordered or strongly fluctuating. Motivated by the effects that the dynamics of the magnetic moments can have on the topological surface states, we investigate the magnetic fluctuations across the (MnBi2_{\text{2}}Te4_{\text{4}})(Bi2_{\text{2}}Te3_{\text{3}})n_{\text{n}} family. Our paramagnetic electron spin resonance experiments reveal contrasting Mn spin dynamics in different compounds, which manifests in a strongly anisotropic Mn spin relaxation in MnBi2_{\text{2}}Te4_{\text{4}} while being almost isotropic in MnBi4_{\text{4}}Te7_{\text{7}}. Our density-functional calculations explain these striking observations in terms of the sensitivity of the local electronic structure to the Mn spin-orientation, and indicate that the anisotropy of the magnetic fluctuations can be controlled by the carrier density, which may directly affect the electronic topological surface states
    corecore