110 research outputs found
Generalized Heisenberg Algebras and Fibonacci Series
We have constructed a Heisenberg-type algebra generated by the Hamiltonian,
the step operators and an auxiliar operator. This algebra describes quantum
systems having eigenvalues of the Hamiltonian depending on the eigenvalues of
the two previous levels. This happens, for example, for systems having the
energy spectrum given by Fibonacci sequence. Moreover, the algebraic structure
depends on two functions f(x) and g(x). When these two functions are linear we
classify, analysing the stability of the fixed points of the functions, the
possible representations for this algebra.Comment: 24 pages, 2 figures, subfigure.st
On quaternary complex Hadamard matrices of small orders
One of the main goals of design theory is to classify, characterize and count
various combinatorial objects with some prescribed properties. In most cases,
however, one quickly encounters a combinatorial explosion and even if the
complete enumeration of the objects is possible, there is no apparent way how
to study them in details, store them efficiently, or generate a particular one
rapidly. In this paper we propose a novel method to deal with these
difficulties, and illustrate it by presenting the classification of quaternary
complex Hadamard matrices up to order 8. The obtained matrices are members of
only a handful of parametric families, and each inequivalent matrix, up to
transposition, can be identified through its fingerprint.Comment: 7 page
- …