880 research outputs found
Instrumental variables quantile regression for panel data with measurement errors
This paper develops an instrumental variables estimator for quantile regression in panel data with fixed effects. Asymptotic properties of the instrumental variables estimator are studied for large N and T when Na/T ! 0, for some a > 0. Wald and Kolmogorov-Smirnov type tests for general linear restrictions are developed. The estimator is applied to the problem of measurement errors in variables, which induces endogeneity and as a result bias in the model. We derive an approximation to the bias in the quantile regression fixed effects estimator in the presence of measurement error and show its connection to similar effects in standard least squares models. Monte Carlo simulations are conducted to evaluate the finite sample properties of the estimator in terms of bias and root mean squared error. Finally, the methods are applied to a model of firm investment. The results show interesting heterogeneity in the Tobin’s q and cash flow sensitivities of investment. In both cases, the sensitivities are monotonically increasing along the quantiles
Recommended from our members
Threshold quantile autoregressive models
We study in this article threshold quantile autoregressive processes. In particular we propose estimation and inference of the parameters in nonlinear quantile processes when the threshold parameter defining nonlinearities is known for each quantile, and also when the parameter vector is estimated consistently. We derive the asymptotic properties of the nonlinear threshold quantile autoregressive estimator. In addition, we develop hypothesis tests for detecting threshold nonlinearities in the quantile process when the threshold parameter vector is not identified under the null hypothesis. In this case we propose to approximate the asymptotic distribution of the composite test using a p-value transformation. This test contributes to the literature on nonlinearity tests by extending Hansen’s (Econometrica 64, 1996, pp.413-430) methodology for the conditional mean process to the entire quantile process. We apply the proposed methodology to model the dynamics of US unemployment growth after the Second World War. The results show evidence of important heterogeneity associated with unemployment, and strong asymmetric persistence on unemployment growth
Recommended from our members
Quantile autoregressive distributed lag model with an application to house price returns
This paper studies quantile regression in an autoregressive dynamic framework with exogenous stationary covariates. Hence, we develop a quantile autoregressive distributed lag model (QADL). We show that these estimators are consistent and asymptotically normal. Inference based on Wald and Kolmogorov-Smirnov tests for general linear restrictions is proposed. An extensive Monte Carlo simulation is conducted to evaluate the properties of the estimators. We demonstrate the potential of the QADL model with an application to house price returns in the United Kingdom. The results show that house price returns present a heterogeneous autoregressive behavior across the quantiles. The real GDP growth and interest rates also have an asymmetric impact on house prices variations
Recommended from our members
Which quantile is the most informative? Maximum likelihood, maximum entropy and quantile regression
This paper studies the connections among quantile regression, the asymmetric Laplace distribution, maximum likelihood and maximum entropy. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. Using the resulting score functions we propose an estimator based on the joint estimating equations. This approach delivers estimates for the slope parameters together with the associated “most probable” quantile. Similarly, this method can be seen as a penalized quantile regression estimator, where the penalty is given by deviations from the median regression. We derive the asymptotic properties of this estimator by showing consistency and asymptotic normality under certain regularity conditions. Finally, we illustrate the use of the estimator with a simple application to the U.S. wage data to evaluate the effect of training on wages
Recommended from our members
On the equivalence of instrumental variables estimators for linear models
This note shows the equivalence of different instrumental variables estimators to solve the endogeneity problem in linear models when valid instruments are available. We demonstrate that the exclusion restriction estimator proposed by Chernozhukov and Hansen (2006) is equivalent to the two-stage least squares and the control function estimators for linear models
Recommended from our members
Endogeneity bias modeling using observables
This paper proposes an alternative solution to the endogeneity problem by explicitly modeling the joint interaction of the endogenous variables and the unobserved causes of the dependent variable as a function of additional observables. We derive identification of the parameters, develop an estimator, and establish its consistency and asymptotic normality
- …