11 research outputs found

    Antimicrobial Resistance in Class 1 Integron-Positive Shiga Toxin-Producing Escherichia coli Isolated from Cattle, Pigs, Food and Farm Environment

    Get PDF
    The aim of this study was to investigate the presence of class 1 integrons in a collection of Shiga toxin-producing Escherichia coli (STEC) from different origins and to characterize pheno- and genotypically the antimicrobial resistance associated to them. A collection of 649 isolates were screened for the class 1 integrase gene (intI1) by Polymerase chain reaction The variable region of class 1 integrons was amplified and sequenced. Positive strains were evaluated for the presence of antimicrobial resistance genes with microarray and for antimicrobial susceptibility by the disk diffusion method. Seven out of 649 STEC strains some to serogroups, O26, O103 and O130 isolated from cattle, chicken burger, farm environment and pigs were identified as positive for intI1. Different arrangements of gene cassettes were detected in the variable region of class 1 integron: dfrA16, aadA23 and dfrA1-aadA1. In almost all strains, phenotypic resistance to streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and sulfisoxazole was observed. Microarray analyses showed that most of the isolates carried four or more antimicrobial resistance markers and STEC strains were categorized as Multridrug-resistant. Although antimicrobials are not usually used in the treatment of STEC infections, the presence of Multridrug-resistant in isolates collected from farm and food represents a risk for animal and human health

    Searching for gallium bioactive compounds: Gallium(III) complexes of tridentate salicylaldehyde semicarbazone derivatives

    No full text
    In the search for gallium bioactive compounds five Ga(III) complexes, [Ga(III)(L-H)(2)](NO(3)), with tridentate salicylaldehyde semicarbazone derivatives as ligands (L) have been synthesized and characterized in the solid state and in solution by different techniques. The crystal structure of [Ga(III)(L4-H)(2)](NO(3))center dot 2H(2)O, where L4 is 3-ethoxysalicylaldehyde semicarbazone, was solved by X-ray diffraction methods. The gallium(III) ion is in a distorted octahedral environment, coordinated to two nearly planar and mutually perpendicular 3-ethoxysalicylaldehyde semicarbazonato anions acting as tridentate ligands through their phenol and carbonyl oxygen atoms and their azomethine nitrogen atom. Their biological potential has been explored by evaluating their activity on Mycobacterium tuberculosis, causative agent of tuberculosis, and their cytotoxicity on tumor cell lines. Three different human tumor cell lines were selected that show different degrees of resistance to metallodrugs: ovarian A2780 (low resistance), breast MCF7 (medium resistance) and prostate PC3 (high resistance) cells. Although the complexes have not shown activity on M. tuberculosis, complexation with gallium has led to the enhancement of the cytotoxic potencies of the organic compounds. Those complexes that contain a bromide substituent at the phenolate ring have shown the highest cytotoxicities. In particular, [Ga(III)(L2-H)(2)](NO(3)), where L2 is 5-bromosalicylaldehyde semicarbazone, has shown a remarkable cytotoxicity on A2780 tumor cell line with an IC(50) value of the same order than cisplatin (IC(50) (Ga-L2) = 2.4 +/- 0.3 mu M; IC(50) (cisplatin) = 2.0 +/- 0.1 mu M, 72 h incubation at 37 degrees C). Interestingly, this complex has also shown moderate cytotoxicity against MCF7 and PC3 cells (IC(50) (MCF7) = 30 +/- 6; IC(50) (PC3) = 18 +/- 3 mu M). Therefore, this gallium compound could be considered a promising wide spectrum potential anti-tumor agent. (C) 2011 Elsevier Ltd. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Indian food habit & food ingredients may have a role in lowering the severity & high death rate from COVID-19 in Indians: findings from the first nutrigenomic analysis

    No full text
    Background & objectives: During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods: In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food components across four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results: Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions: Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case-control studies are required to support our current findings
    corecore