110 research outputs found
Visual Affect Around the World: A Large-scale Multilingual Visual Sentiment Ontology
Every culture and language is unique. Our work expressly focuses on the
uniqueness of culture and language in relation to human affect, specifically
sentiment and emotion semantics, and how they manifest in social multimedia. We
develop sets of sentiment- and emotion-polarized visual concepts by adapting
semantic structures called adjective-noun pairs, originally introduced by Borth
et al. (2013), but in a multilingual context. We propose a new
language-dependent method for automatic discovery of these adjective-noun
constructs. We show how this pipeline can be applied on a social multimedia
platform for the creation of a large-scale multilingual visual sentiment
concept ontology (MVSO). Unlike the flat structure in Borth et al. (2013), our
unified ontology is organized hierarchically by multilingual clusters of
visually detectable nouns and subclusters of emotionally biased versions of
these nouns. In addition, we present an image-based prediction task to show how
generalizable language-specific models are in a multilingual context. A new,
publicly available dataset of >15.6K sentiment-biased visual concepts across 12
languages with language-specific detector banks, >7.36M images and their
metadata is also released.Comment: 11 pages, to appear at ACM MM'1
From unlabelled tweets to Twitter-specific opinion words
In this article, we propose a word-level classification model for automatically generating a Twitter-specific opinion lexicon from a corpus of unlabelled tweets. The tweets from the corpus are represented by two vectors: a bag-of-words vector and a semantic vector based on word-clusters. We propose a distributional representation for words by treating them as the centroids of the tweet vectors in which they appear. The lexicon generation is conducted by training a word-level classifier using these centroids to form the instance space and a seed lexicon to label the training instances. Experimental results show that the two types of tweet vectors complement each other in a statistically significant manner and that our generated lexicon produces significant improvements for tweet-level polarity classification
SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods
In the last few years thousands of scientific papers have investigated
sentiment analysis, several startups that measure opinions on real data have
emerged and a number of innovative products related to this theme have been
developed. There are multiple methods for measuring sentiments, including
lexical-based and supervised machine learning methods. Despite the vast
interest on the theme and wide popularity of some methods, it is unclear which
one is better for identifying the polarity (i.e., positive or negative) of a
message. Accordingly, there is a strong need to conduct a thorough
apple-to-apple comparison of sentiment analysis methods, \textit{as they are
used in practice}, across multiple datasets originated from different data
sources. Such a comparison is key for understanding the potential limitations,
advantages, and disadvantages of popular methods. This article aims at filling
this gap by presenting a benchmark comparison of twenty-four popular sentiment
analysis methods (which we call the state-of-the-practice methods). Our
evaluation is based on a benchmark of eighteen labeled datasets, covering
messages posted on social networks, movie and product reviews, as well as
opinions and comments in news articles. Our results highlight the extent to
which the prediction performance of these methods varies considerably across
datasets. Aiming at boosting the development of this research area, we open the
methods' codes and datasets used in this article, deploying them in a benchmark
system, which provides an open API for accessing and comparing sentence-level
sentiment analysis methods
Re-ranking Permutation-Based Candidate Sets with the n-Simplex Projection
In the realm of metric search, the permutation-based approaches have shown very good performance in indexing and supporting approximate search on large databases. These methods embed the metric objects into a permutation space where candidate results to a given query can be efficiently identified. Typically, to achieve high effectiveness, the permutation-based result set is refined by directly comparing each candidate object to the query one. Therefore, one drawback of these approaches is that the original dataset needs to be stored and then accessed during the refining step. We propose a refining approach based on a metric embedding, called n-Simplex projection, that can be used on metric spaces meeting the n-point property. The n-Simplex projection provides upper- and lower-bounds of the actual distance, derived using the distances between the data objects and a finite set of pivots. We propose to reuse the distances computed for building the data permutations to derive these bounds and we show how to use them to improve the permutation-based results. Our approach is particularly advantageous for all the cases in which the traditional refining step is too costly, e.g. very large dataset or very expensive metric function
Sociolinguistic Features for Author Gender Identification: From Qualitative Evidence to Quantitative Analysis
This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Quantitative Linguistics on 7 October 2016, available online: http://www.tandfonline.com/10.1080/09296174.2016.1226430. The Accepted Manuscript is under embargo. Embargo end date: 7 April 2018.Theoretical and empirical studies prove the strong relationship between social factors and the individual linguistic attitudes. Different social categories, such as gender, age, education, profession and social status, are strongly related with the linguistic diversity of peopleâs everyday spoken and written interaction. In this paper, sociolinguistic studies addressed to gender differentiation are overviewed in order to identify how various linguistic characteristics differ between women and men. Thereafter, it is examined if and how these qualitative features can become quantitative metrics for the task of gender identification from texts on web blogs. The evaluation results showed that the âsyntactic complexityâ, the âtag questionsâ, the âperiod lengthâ, the âadjectivesâ and the âvocabulary richnessâ characteristics seem to be significantly distinctive with respect to the authorâs gender.Peer reviewedFinal Accepted Versio
- âŠ