2,431 research outputs found

    Effect of the spatial curvature of the Universe on the form of the gravitational potential

    Full text link
    Within the cosmic screening approach, we obtain the exact formulas for the velocity-independent gravitational potentials produced by matter in the form of discrete sources distributed in the open and closed Universes. These formulas demonstrate that spatial curvature of the Universe considerably affect the form of the potentials and forces. While in the open Universe the gravitational force undergoes exponential suppression at cosmological distances, in the closed Universe the force induced by an individual mass is equal to zero at the antipodal point with respect to this mass. The derived formulas are applicable for investigations of the motion of astrophysical objects (e.g., galaxies) in the open and closed Universes, and for simulations of the large scale structure formation.Comment: v2 (matching the publication in European Physical Journal C) = v1 + minor changes + new Refs.; 8 pages, 3 figure

    The rise and fall of the compact jet in GRO J1655-40

    Get PDF
    In this work, we present some preliminary results on a multi-wavelength (radio/infrared/optical/X-ray) study of GRO J1655-40 during its 2005 outburst. We focus on the broadband spectral energy distribution during the different stages of the outburst. In particular, using this unprecedented coverage, and especially thanks to the new constraints given in the mid-IR by Spitzer, we can test the physical self-consistent disk-jet model during the hard state, where the source shows radio emission from a compact jet. The hard state broadband spectra of the observations during the decay of the outburst, are fairly well fit using the jet model with parameters overall similar to those found for Cyg X-1 and GX 339-4 in a previous work. However, we find that, compared to the other two BHs, GRO J1655-40 has a much higher jet power (at least a factor of 3), and that, most notably, the model seems to underestimate the radio emissio

    The effect of dust scattering on the timing properties of black holes

    Get PDF
    It has been known that sources with high absorption column density also have high dust column density along the line of sight. The differential delays caused by small angle scattering of X rays by dust may have important effects on the power spectra of Galactic black holes at low energies, and impact studies that use the relation between the rms amplitude of variability and energy to determine the origin of QPOs from these sources. We observed the high absorption column density (NH ˜1023 cm-2 ) GBH 1E1740.7-2942 for 20 ks simultaneously with XMM-Newton and RXTE. By comparing the power spectra from the events in the core of the point spread function (PSF) of XMM-Newton EPIC-PN (using imaging and excluding the scattering halo) and the RXTE data, we quantified the effects of small angle scattering on the timing properties of this source. The rms amplitude of variability in ˜2-6 keV band obtained from the XMM-Newton data is higher than that of the RXTE as expected from the a scattering halo contribution in the RXTE

    State transitions and jet formation in black hole binaries

    Get PDF
    The daily monitoring observations of black hole transients with RXTE provided important clues on the conditions of the state transitions, both in terms of spectra and timing. The recent addition of monitoring in the optical-infrared and the radio band significantly extended our knowledge of the relation between the jets and the spectral states. However, there are still very important unanswered questions, most importantly, whether the formation of the jet triggers any change in the spectral and temporal properties of the source. The answer to this question is also intrinsically related to the origin of the hard X-ray emission. In this work, the relation between the jet and the state transitions is discussed, using the data from GX 339-4, 4U 1543-47, H 1743-322, and GRO J1655-40, concentrating on the evolution of spectral and temporal parameters before, during and after the formation of the jet

    Low/hard state of microquasars at low luminosities

    Get PDF
    Galactic black hole transients (GBHTs) spend most of their time in the low/hard spectral state during the outburst decay. This state exhibits a hard X-ray spectrum with X-ray flux correlating with both the radio and the infrared flux. As the luminosity declines, the spectra of the GBHTs got harder. However, for a few sources at very low luminosity levels a softening of the spectrum has been observed. In this work we discuss the evolution of GBHTs at the very lowest luminosity levels using RXTE data and discuss the behavior of the X-ray spectrum, as well as the reported correlations

    Galactic black holes in the hard state, a multiwavelength view of accretion and ejection

    Get PDF
    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with multi-wavelength campaigns using RXTE, SWIFT, SUZAKU, SPITZER, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the SWIFT results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including SPITZER data) of GRO J 1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of selected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objectives of our group
    corecore