5 research outputs found

    Analysis of peptides using N-methylpolyvinylpyridium as silica surface modifier for CE-ESI-MS

    No full text
    In this study, the N-methylpolyvinylpyridinuim polymer has for the first time been used as a silica surface modifier for CE in combination with ESI MS (CE-ESI-MS). The compatibility for ESI-MS was demonstrated by the analysis of peptides and protein digests. The N-methylpolyvinylpyridium surface interacts electrostatically with the ionized silanol groups, giving a cationic surface with a reversed EOF. The surface modifier gave rapid and repeatable separations of peptides, proteins and protein digests at acidic pH for more than 4 h of continuous use. The CE separation yielded peak efficiencies of up to 4.3105 plates/m. The surface coating is highly compatible with ESI and facilitates the separation and analysis of complex peptide mixtures as shown by the analysis of BSA digests

    Rapid capillary electrophoresis time-of-flight mass spectrometry separations of peptides and proteins using a monoquaternarized piperazine compound (M7C4I) for capillary coatings

    No full text
    A monoquaternarized piperazine, 1-(4-iodobutyl) 4-aza-1-azoniabicyclo[2,2,2] octane iodide (M7C4I), has been evaluated as a surface derivatization reagent for CE in combination with TOF MS for the analysis of proteins, peptides, and protein digests. The M7C4I piperazine, at alkaline pH, forms a covalent bond via alkylation of the ionized silanols producing a cationic surface with a highly stable and reversed EOF. The obtained surface yields rapid separations (less than 5 min) of peptides and proteins at acidic pH with high separation efficiencies (up to 1.1×106 plates/m for peptides and up to 1.8×106 plates/m for proteins) and no observed bleeding of the coating reagent into the mass spectrometer. The simplicity of the coating procedure also enables fast (2 min) regeneration of the surface, if necessary. This is useful in the analysis of complex samples in order to prevent possible memory effects. The potential of using M7C4I-coated capillaries for MS analysis of complex samples is demonstrated by the separation of peptides, proteins, and protein digests. Even more, the spectacular thing in which large intact proteins with molecular masses over 0.5 MDa could be separated. The coating showed good ability to handle these large proteins with high efficiency and retained peak shape as demonstrated by separation of IgG1 (150 kDa) and thyroglobulin (669 kDa)
    corecore