112 research outputs found

    Clay swelling of Quaternary and Paleogene deposits in the south-eastern flanks of West Siberian iron ore basin

    Get PDF
    Revealing soil swelling and estimation of swelling rate are of great importance at the initial survey stages as well as the bases for further determination of more accurate factors used for selection of recovery methods and facility design. The paper states briefly the most conventional prediction express-methods and determination of swelling indicators, the results of laboratory research in clay composition and properties, free swell index of Quaternary and Paleogene clays in the south-east of West Siberian iron-ore, gives the estimates of the swelling rate. The results have been statistically analyzed, revealing the relationship of properties, on the basis of which the correlation dependencies are suggested to predict the free swell index as well as to apply it for frost heave prediction

    IL-10 correlates with the expression of carboxypeptidase B2 and lymphovascular invasion in inflammatory breast cancer: The potential role of tumor infiltrated macrophages

    Get PDF
    Pro-carboxypeptidase B2 (pro-CPB2) or thrombin-activatable fibrinolysis inhibitor (TAFI) is a glycoprotein encoded by the CPB2 gene and deregulated in several cancer types, including breast cancer. Thrombin binding to thrombomodulin (TM), encoded by THBD, is important for TAFI activation. CPB2 gene expression is influenced by genetic polymorphism and cytokines such as interleukin 10 (IL-10). Our previous results showed that tumor infiltrating monocytes/macrophages (CD14+/CD16+) isolated from inflammatory breast cancer (IBC) patients’ secrete high levels of IL-10. The aim of the present study is to test genetic polymorphism and expression of CPB2 in healthy breast tissues and carcinoma tissues of non-IBC and IBC patients. Furthermore, to investigate whether IL-10 modulates the expression of CPB2 and THBD in vivo and in-vitro. We tested CPB2 Thr325Ile polymorphism using restriction fragment length polymorphism, (RFLP) technique in healthy and carcinoma breast tissues. The mRNA expression of CPB2, THBD and IL10 were assessed by RT-qPCR. Infiltration of CD14+ cells was assessed by immunohistochemistry. In addition, we investigated the correlation between infiltration of CD14+ cells and expression of IL10 and CPB2. Furthermore, we correlated IL10 expression with the expression of both CPB2 and THBD in breast carcinoma tissues. Finally, we validated the role of recombinant IL-10 in regulating the expression of CPB2 and THBD using different breast cancer cell lines. Our results showed that CPB2 genotypes carrying the high-risk allele [Thr/Ile (CT) and Ile/Ile (TT)] were more frequent in both IBC and non-IBC patients compared to control group. CPB2 genotypes did not show any statistical correlation with CPB2 mRNA expression levels or patients’ clinical pathological properties. Interestingly, CPB2 and IL10 expression were significantly higher and positively correlated with the incidence of CD14+ cells in carcinoma tissues of IBC as compared to non-IBC. On the other hand, THBD expression was significantly lower in IBC carcinoma versus non-IBC tissues. Based on molecular subtypes, CPB2 and IL10 expression were significantly higher in triple negative (TN) as compared to hormonal positive (HP) carcinoma tissues of IBC. Moreover, CPB2 expression was positively correlated with presence of lymphovascular invasion and the expression of IL10 in carcinoma tissues of IBC patients. Furthermore, recombinant human IL-10 stimulated CPB2 expression in SUM-149 (IBC cell line) but not in MDA-MB-231 (non-IBC cell line), while there was no significant effect THBD expression. In conclusion, carcinoma tissues of IBC patients are characterized by higher expression of CPB2 and lower expression of THBD. Moreover, CPB2 positively correlates with IL10 mRNA expression, incidence of CD14+ cells and lymphovascular invasion in IBC patients. IL-10 stimulated CPB2 expression in TN-IBC cell line suggests a relevant role of CPB2 in the aggressive phenotype of IBC

    Differential Gene Expression of Fresh Tissue and Patient-Derived Explants’ Matricellular Proteins Augment Inflammatory Breast Cancer Metastasis: The Possible Role of IL-6 and MCP-1

    Get PDF
    BACKGROUND: Matricellular proteins comprising matrisome and adhesome are responsible for structure integrity and interactions between cells in the tumour microenvironment of breast cancer. Changes in the gene expression of matrisome and adhesome augment metastasis. Since inflammatory breast cancer (IBC) is characterized by high metastatic behaviour. Herein, we compared the gene expression profile of matrisome and adhesome in non-IBC and IBC in fresh tissue and ex vivo patient-derived explants (PDEs) and we also compared the secretory inflammatory mediators of PDEs in non-IBC and IBC to identify secretory cytokines participate in cross-talk between cells via interactions with matrisome and adhisome. METHODS: Fifty patients (31 non-IBC and 19 IBC) were enrolled in the present study. To test their validation in clinical studies, PDEs were cultured as an ex vivo model. Gene expression and cytokine array were used to identify candidate genes and cytokines contributing to metastasis in the examined fresh tissues and PDEs. Bioinformatics analysis was applied on identified differentially expressed genes using GeneMANIA and Metascape gene annotation and analysis resource to identify pathways involved in IBC metastasis. RESULTS: Normal and cancer fresh tissues and PDEs of IBC were characterized by overexpression of CDH1 and MMP14 and downregulation of CTNNA1 and TIMP1 compared with non-IBC. The secretome of IBC cancer PDEs is characterized by significantly high expression of interleukin 6 and monocyte chemoattractant protein-1 (CCL2) compared with non-IBC. CONCLUSION: Genes expressed by adhisome and matrisome play a significant role in IBC metastasis and should be considered novel target therapy

    Cathepsin b: a potential prognostic marker for inflammatory breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer. In non-IBC, the cysteine protease cathepsin B (CTSB) is known to be involved in cancer progression and invasion; however, very little is known about its role in IBC.</p> <p>Methods</p> <p>In this study, we enrolled 23 IBC and 27 non-IBC patients. All patient tissues used for analysis were from untreated patients. Using immunohistochemistry and immunoblotting, we assessed the levels of expression of CTSB in IBC versus non-IBC patient tissues. Previously, we found that CTSB is localized to caveolar membrane microdomains in cancer cell lines including IBC, and therefore, we also examined the expression of caveolin-1 (cav-1), a structural protein of caveolae in IBC versus non-IBC tissues. In addition, we tested the correlation between the expression of CTSB and cav-1 and the number of positive metastatic lymph nodes in both patient groups.</p> <p>Results</p> <p>Our results revealed that CTSB and cav-1 were overexpressed in IBC as compared to non-IBC tissues. Moreover, there was a significant positive correlation between the expression of CTSB and the number of positive metastatic lymph nodes in IBC.</p> <p>Conclusions</p> <p>CTSB may initiate proteolytic pathways crucial for IBC invasion. Thus, our data demonstrate that CTSB may be a potential prognostic marker for lymph node metastasis in IBC.</p

    The Role of the Reducible Dopant in Solid Electrolyte-Lithium Metal Interfaces

    Get PDF
    Garnet solid electrolytes, of the form Li7La3Zr2O12 (LLZO), remain an enticing prospect for solid-state batteries owing to their chemical and electrochemical stability in contact with metallic lithium. Dopants, often employed to stabilize the fast ion conducting cubic garnet phase, typically have no effect on the chemical stability of LLZO in contact with Li metal but have been found recently to impact the properties of the Li/garnet interface. For dopants more “reducible” than Zr (e.g., Nb and Ti), contradictory reports of either raised or reduced Li/garnet interfacial resistances have been attributed to the dopant. Here, we investigate the Li/LLZO interface in W-doped Li7La3Zr2O12 (LLZWO) to determine the influence of a “reducible” dopant on the electrochemical properties of the Li/garnet interface. Single-phase LLZWO is synthesized by a new sol–gel approach and densified by spark plasma sintering. Interrogating the resulting Li/LLZWO interface/interphase by impedance, muon spin relaxation and X-ray absorption spectroscopies uncover the significant impact of surface lithiation on electrochemical performance. Upon initial contact, an interfacial reaction occurs between LLZWO and Li metal, leading to the reduction of surface W6+ centers and an initial reduction of the Li/garnet interfacial resistance. Propagation of this surface reaction, driven by the high mobility of Li+ ions through the grain surfaces, thickens the resistive interphases throughout the material and impedes Li+ ion transport between the grains. The resulting high resistance accumulating in the system impedes cycling at high current densities. These insights shed light on the nature of lithiated interfaces in garnet solid electrolytes containing a reducible dopant where high Li+ ion mobility and the reducible nature of the dopant can significantly affect electrochemical performance

    The role of the reducible dopant in solid electrolyte–lithium metal interfaces

    Get PDF
    Garnet solid electrolytes, of the form Li7La3Zr2O12 (LLZO), remain an enticing prospect for solid-state batteries owing to their chemical and electrochemical stability in contact with metallic lithium. Dopants, often employed to stabilize the fast ion conducting cubic garnet phase, typically have no effect on the chemical stability of LLZO in contact with Li metal but have been found recently to impact the properties of the Li/garnet interface. For dopants more "reducible"than Zr (e.g., Nb and Ti), contradictory reports of either raised or reduced Li/garnet interfacial resistances have been attributed to the dopant. Here, we investigate the Li/LLZO interface in W-doped Li7La3Zr2O12 (LLZWO) to determine the influence of a "reducible"dopant on the electrochemical properties of the Li/garnet interface. Single-phase LLZWO is synthesized by a new sol-gel approach and densified by spark plasma sintering. Interrogating the resulting Li/LLZWO interface/interphase by impedance, muon spin relaxation and X-ray absorption spectroscopies uncover the significant impact of surface lithiation on electrochemical performance. Upon initial contact, an interfacial reaction occurs between LLZWO and Li metal, leading to the reduction of surface W6+ centers and an initial reduction of the Li/garnet interfacial resistance. Propagation of this surface reaction, driven by the high mobility of Li+ ions through the grain surfaces, thickens the resistive interphases throughout the material and impedes Li+ ion transport between the grains. The resulting high resistance accumulating in the system impedes cycling at high current densities. These insights shed light on the nature of lithiated interfaces in garnet solid electrolytes containing a reducible dopant where high Li+ ion mobility and the reducible nature of the dopant can significantly affect electrochemical performance

    Harnessing inter-disciplinary collaboration to improve emergency care in low- and middle-income countries (LMICs): results of research prioritisation setting exercise

    Get PDF
    Background More than half of deaths in low- and middle-income countries (LMICs) result from conditions that could be treated with emergency care - an integral component of universal health coverage (UHC) - through timely access to lifesaving interventions. Methods The World Health Organization (WHO) aims to extend UHC to a further 1 billion people by 2023, yet evidence supporting improved emergency care coverage is lacking. In this article, we explore four phases of a research prioritisation setting (RPS) exercise conducted by researchers and stakeholders from South Africa, Egypt, Nepal, Jamaica, Tanzania, Trinidad and Tobago, Tunisia, Colombia, Ethiopia, Iran, Jordan, Malaysia, South Korea and Phillipines, USA and UK as a key step in gathering evidence required by policy makers and practitioners for the strengthening of emergency care systems in limited-resource settings. Results The RPS proposed seven priority research questions addressing: identification of context-relevant emergency care indicators, barriers to effective emergency care; accuracy and impact of triage tools; potential quality improvement via registries; characteristics of people seeking emergency care; best practices for staff training and retention; and cost effectiveness of critical care – all within LMICs. Conclusions Convened by WHO and facilitated by the University of Sheffield, the Global Emergency Care Research Network project (GEM-CARN) brought together a coalition of 16 countries to identify research priorities for strengthening emergency care in LMICs. Our article further assesses the quality of the RPS exercise and reviews the current evidence supporting the identified priorities

    Harnessing inter-disciplinary collaboration to improve emergency care in low- and middle-income countries (LMICs): results of research prioritisation setting exercise

    Get PDF
    Background More than half of deaths in low- and middle-income countries (LMICs) result from conditions that could be treated with emergency care - an integral component of universal health coverage (UHC) - through timely access to lifesaving interventions. Methods The World Health Organization (WHO) aims to extend UHC to a further 1 billion people by 2023, yet evidence supporting improved emergency care coverage is lacking. In this article, we explore four phases of a research prioritisation setting (RPS) exercise conducted by researchers and stakeholders from South Africa, Egypt, Nepal, Jamaica, Tanzania, Trinidad and Tobago, Tunisia, Colombia, Ethiopia, Iran, Jordan, Malaysia, South Korea and Phillipines, USA and UK as a key step in gathering evidence required by policy makers and practitioners for the strengthening of emergency care systems in limited-resource settings. Results The RPS proposed seven priority research questions addressing: identification of context-relevant emergency care indicators, barriers to effective emergency care; accuracy and impact of triage tools; potential quality improvement via registries; characteristics of people seeking emergency care; best practices for staff training and retention; and cost effectiveness of critical care – all within LMICs. Conclusions Convened by WHO and facilitated by the University of Sheffield, the Global Emergency Care Research Network project (GEM-CARN) brought together a coalition of 16 countries to identify research priorities for strengthening emergency care in LMICs. Our article further assesses the quality of the RPS exercise and reviews the current evidence supporting the identified priorities

    A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li–S batteries

    Get PDF
    Li–S solid state batteries, employing Li2S as a pre-lithiated cathode, present a promising low cost, high capacity and safer alternative to their liquid electrolyte counterparts, where dissolution of intermediate polysulfide species can result in loss of active material and a subsequent decrease in ionic conductivity. A nanostructured Li2S material would afford greater flexibility in optimising the cathode composite for more harmonious electrode–electrolyte interactions, yet facile routes to such nanoscale materials are limited. Here, we report a facile and scalable microwave approach to directly synthesize nanostructured Li2S from a glyme solution containing lithium polysulfides. As-synthesized Li2S presents an ideal architecture for the construction of free-standing cathodes for all-solid-state Li–S batteries
    corecore