215 research outputs found

    Intermediate energy Coulomb excitation as a probe of nuclear structure at radioactive beam facilities

    Full text link
    The effects of retardation in the Coulomb excitation of radioactive nuclei in intermediate energy collisions (Elab ~100 MeV/nucleon) are investigated. We show that the excitation cross sections of low-lying states in 11Be, {38,40,42}S and {44,46}Ar projectiles incident on gold and lead targets are modified by as much as 20% due to these effects. The angular distributions of decaying gamma-rays are also appreciably modified.Comment: 21 pages, 3 figures, Phys. Rev. C, in pres

    Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values

    Full text link
    The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67Ga, 80mBr, 89Zr, 90Nb, 99mTc, 111In, 117mSn, 119Sb, 123I, 124I, 125I, 135La, 195mPt and 201Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKS using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKS in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.Comment: 27 pages, 4 figures, 3 table

    Critical test of multi-{\it j} supersymmetries from magnetic moment measurements

    Get PDF
    Magnetic moment measurements in odd nuclei directly probe the distribution of fermion states and hence provide one of the most critical tests for multi-jj supersymmetries in collective nuclei. Due to complexity of calculations and lack of data, such tests have not been performed in the past. Using the Mathematica software, we derive analytic expressions for magnetic moments in the SO(BF)(6)Ă—SU(F)(2)SO^{(BF)}(6) \times SU^{(F)}(2) limit of the U(6/12)U(6/12) supersymmetry and compare the results with recent measurements in 195^{195}Pt.Comment: 10 pages with 1 figur

    Probing the N=14N = 14 subshell closure: gg factor of the 26^{26}Mg(21+^+_1) state

    Full text link
    The first-excited state gg~factor of 26^{26}Mg has been measured relative to the gg factor of the 24^{24}Mg(21+2^+_1) state using the high-velocity transient-field technique, giving g=+0.86±0.10g=+0.86\pm0.10. This new measurement is in strong disagreement with the currently adopted value, but in agreement with the sdsd-shell model using the USDB interaction. The newly measured gg factor, along with E(21+)E(2^+_1) and B(E2)B(E2) systematics, signal the closure of the νd5/2\nu d_{5/2} subshell at N=14N=14. The possibility that precise gg-factor measurements may indicate the onset of neutron pfpf admixtures in first-excited state even-even magnesium isotopes below 32^{32}Mg is discussed and the importance of precise excited-state gg-factor measurements on sdsd~shell nuclei with N≠ZN\neq Z to test shell-model wavefunctions is noted.Comment: 8 pages, 5 figure

    Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S

    Full text link
    The shell structure underlying shape changes in neutron-rich nuclei near N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in 38S and 40S produced as fast radioactive beams. There is a fine balance between proton and neutron contributions to the magnetic moments in both nuclei. The g factor of deformed 40S does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR
    • …
    corecore