2,438 research outputs found

    Multi-field approach in mechanics of structural solids

    Get PDF
    We overview the basic concepts, models, and methods related to the multi-field continuum theory of solids with complex structures. The multi-field theory is formulated for structural solids by introducing a macrocell consisting of several primitive cells and, accordingly, by increasing the number of vector fields describing the response of the body to external factors. Using this approach, we obtain several continuum models and explore their essential properties by comparison with the original structural models. Static and dynamical problems as well as the stability problems for structural solids are considered. We demonstrate that the multi-field approach gives a way to obtain families of models that generalize classical ones and are valid not only for long-, but also for short-wavelength deformations of the structural solid. Some examples of application of the multi-field theory and directions for its further development are also discussed.Comment: 25 pages, 18 figure

    Exact Moving and Stationary Solutions of a Generalized Discrete Nonlinear Schrodinger Equation

    Get PDF
    We obtain exact moving and stationary, spatially periodic and localized solutions of a generalized discrete nonlinear Schr\"odinger equation. More specifically, we find two different moving periodic wave solutions and a localized moving pulse solution. We also address the problem of finding exact stationary solutions and, for a particular case of the model when stationary solutions can be expressed through the Jacobi elliptic functions, we present a two-point map from which all possible stationary solutions can be found. Numerically we demonstrate the generic stability of the stationary pulse solutions and also the robustness of moving pulses in long-term dynamics.Comment: 22 pages, 7 figures, to appear in J. Phys.

    Two-dimensional manifold with point-like defects

    Get PDF
    We study a class of two-dimensional compact extra spaces isomorphic to the sphere S2S^2 in the framework of multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.Comment: 4 pages, 2 figures; Proceedings of the Conference of Fundamental Research and Particle Physics, 18-20 February 2015, Moscow, Russian Federatio

    Orbital glass and spin glass states of 3He-A in aerogel

    Full text link
    Glass states of superfluid A-like phase of 3He in aerogel induced by random orientations of aerogel strands are investigated theoretically and experimentally. In anisotropic aerogel with stretching deformation two glass phases are observed. Both phases represent the anisotropic glass of the orbital ferromagnetic vector l -- the orbital glass (OG). The phases differ by the spin structure: the spin nematic vector d can be either in the ordered spin nematic (SN) state or in the disordered spin-glass (SG) state. The first phase (OG-SN) is formed under conventional cooling from normal 3He. The second phase (OG-SG) is metastable, being obtained by cooling through the superfluid transition temperature, when large enough resonant continuous radio-frequency excitation are applied. NMR signature of different phases allows us to measure the parameter of the global anisotropy of the orbital glass induced by deformation.Comment: 7 pages, 6 figures, Submitted to Pis'ma v ZhETF (JETP Letters

    Random anisotropy disorder in superfluid 3He-A in aerogel

    Full text link
    The anisotropic superfluid 3He-A in aerogel provides an interesting example of a system with continuous symmetry in the presence of random anisotropy disorder. Recent NMR experiments allow us to discuss two regimes of the orientational disorder, which have different NMR properties. One of them, the (s)-state, is identified as the pure Larkin-Imry-Ma state. The structure of another state, the (f)-state, is not very clear: probably it is the Larkin-Imry-Ma state contaminated by the network of the topological defects pinned by aerogel.Comment: JETP Lett. style, 6 pages, no figures, discussion extended, references added, version to be published in JETP Letter

    Translationally invariant nonlinear Schrodinger lattices

    Full text link
    Persistence of stationary and traveling single-humped localized solutions in the spatial discretizations of the nonlinear Schrodinger (NLS) equation is addressed. The discrete NLS equation with the most general cubic polynomial function is considered. Constraints on the nonlinear function are found from the condition that the second-order difference equation for stationary solutions can be reduced to the first-order difference map. The discrete NLS equation with such an exceptional nonlinear function is shown to have a conserved momentum but admits no standard Hamiltonian structure. It is proved that the reduction to the first-order difference map gives a sufficient condition for existence of translationally invariant single-humped stationary solutions and a necessary condition for existence of single-humped traveling solutions. Other constraints on the nonlinear function are found from the condition that the differential advance-delay equation for traveling solutions admits a reduction to an integrable normal form given by a third-order differential equation. This reduction also gives a necessary condition for existence of single-humped traveling solutions. The nonlinear function which admits both reductions defines a two-parameter family of discrete NLS equations which generalizes the integrable Ablowitz--Ladik lattice.Comment: 24 pages, 4 figure
    • …
    corecore