1,711 research outputs found

    The stability of a trailing-line vortex in compressible flow

    Get PDF
    We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow. The problem is tackled numerically and also asymptotically, in the limit of large (aximuthal and streamwise) wavenumbers, together with large Mach numbers. The nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumbers. At very high wavenumbers and Mach numbers, the mode which is present in the incompressible case ceases to be unstable, while new 'center mode' forms, whose stability characteristics, are determined primarily by conditions close to the vortex axis. We find that generally the flow becomes less unstable as the Mach number increases, and that the regime of instability appears generally confined to disturbances in a direction counter to the direction of the rotation of the swirl of the vortex. Throughout the paper, comparison is made between our numerical results and results obtained from the various asymptotic theories

    Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation

    Get PDF
    A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed

    The effect of aneuploidy on meiotic crossing over and segregation in yeast.

    Get PDF
    SUMMARYMeiotic chromosome associations in homothallic strains ofS. cerevisiaewere investigated by analysis of meiotic spore colonies and crossing over in +/+/− trisomics. The segregants of these aneuploids produce phenotypically distinguishable tetrasomic spore colonies. The data indicate that trivalent associations occur with a high frequency in trisomics of chromosome XVII and that the frequency of second division segregation is markedly increased over that found in the normal dipoid

    Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter

    Get PDF
    Optical cavities can enhance and control light-matter interactions. This level of control has recently been extended to the nanoscale with single emitter strong coupling even at room temperature using plasmonic nanostructures. However, emitters in static geometries, limit the ability to tune the coupling strength or to couple different emitters to the same cavity. Here, we present tip-enhanced strong coupling (TESC) with a nanocavity formed between a scanning plasmonic antenna tip and the substrate. By reversibly and dynamically addressing single quantum dots, we observe mode splitting up to 160 meV and anticrossing over a detuning range of ~100 meV, and with subnanometer precision over the deep subdiffraction-limited mode volume. Thus, TESC enables previously inaccessible control over emitter-nanocavity coupling and mode volume based on near-field microscopy. This opens pathways to induce, probe, and control single-emitter plasmon hybrid quantum states for applications from optoelectronics to quantum information science at room temperature

    Justifications in Constraint Handling Rules for Logical Retraction in Dynamic Algorithms

    Full text link
    We present a straightforward source-to-source transformation that introduces justifications for user-defined constraints into the CHR programming language. Then a scheme of two rules suffices to allow for logical retraction (deletion, removal) of constraints during computation. Without the need to recompute from scratch, these rules remove not only the constraint but also undo all consequences of the rule applications that involved the constraint. We prove a confluence result concerning the rule scheme and show its correctness. When algorithms are written in CHR, constraints represent both data and operations. CHR is already incremental by nature, i.e. constraints can be added at runtime. Logical retraction adds decrementality. Hence any algorithm written in CHR with justifications will become fully dynamic. Operations can be undone and data can be removed at any point in the computation without compromising the correctness of the result. We present two classical examples of dynamic algorithms, written in our prototype implementation of CHR with justifications that is available online: maintaining the minimum of a changing set of numbers and shortest paths in a graph whose edges change.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Quantum statistics on graphs

    Full text link
    Quantum graphs are commonly used as models of complex quantum systems, for example molecules, networks of wires, and states of condensed matter. We consider quantum statistics for indistinguishable spinless particles on a graph, concentrating on the simplest case of abelian statistics for two particles. In spite of the fact that graphs are locally one-dimensional, anyon statistics emerge in a generalized form. A given graph may support a family of independent anyon phases associated with topologically inequivalent exchange processes. In addition, for sufficiently complex graphs, there appear new discrete-valued phases. Our analysis is simplified by considering combinatorial rather than metric graphs -- equivalently, a many-particle tight-binding model. The results demonstrate that graphs provide an arena in which to study new manifestations of quantum statistics. Possible applications include topological quantum computing, topological insulators, the fractional quantum Hall effect, superconductivity and molecular physics.Comment: 21 pages, 6 figure

    Cytokine Profiles of Stimulated Blood Lymphocytes in Asthmatic and Healthy Adolescents Cross the School Year

    Get PDF
    T cell cytokines play an important role in mediating airway inflammation in asthma. The predominance of a Th2 cytokine profile, particularly interleukin (IL)-4 and IL-5, is associated with the pathogenesis and course of asthma. The aim of this study was to test the hypothesis that a stressful life event alters the pattern of cytokine release in asthmatic individuals. Thirteen healthy controls and 21 asthmatic adolescents gave blood samples three times over a semester: midsemester, during the week of final examinations, and 2-3 weeks after examinations. Interferon-γ (IFN-γ), IL-2, IL-4, and IL-5 were measured from supernatants of cells stimulated with PHA/PMA for 24 h. Cells from asthmatic subjects released significantly more IL-5 during the examination and postexamination periods, whereas cells from healthy controls released significantly more IL-2 during the midsemester and examination periods, thereby indicating a bias for a Th2-like pattern in asthmatics and a Th 1-like pattern in healthy controls. IL-4 and IL-5 production showed a marked decrease during and after examinations in healthy controls, whereas this decline was absent in asthmatics. The ratios of IFN-γ:IL-4 and IFN-γ:IL-5 also revealed significant changes in the profile of cytokine release across the semester. These results indicate differential cytokine responses in asthmatics that may become pronounced during periods of cellular activation
    corecore