35 research outputs found

    DIRK Schemes with High Weak Stage Order

    Full text link
    Runge-Kutta time-stepping methods in general suffer from order reduction: the observed order of convergence may be less than the formal order when applied to certain stiff problems. Order reduction can be avoided by using methods with high stage order. However, diagonally-implicit Runge-Kutta (DIRK) schemes are limited to low stage order. In this paper we explore a weak stage order criterion, which for initial boundary value problems also serves to avoid order reduction, and which is compatible with a DIRK structure. We provide specific DIRK schemes of weak stage order up to 3, and demonstrate their performance in various examples.Comment: 10 pages, 5 figure

    A new method for estimating derivatives based on a distribution approach

    Full text link
    International audienceIn many applications, the estimation of derivatives has to be done from noisy measured signal. In this paper, an original method based on a distribution approach is presented. Its interest is to report the derivatives on infinitely differentiable functions. Thus, the estimation of the derivatives is done only from the signal. Besides, this method gives some explicit formulae leading to fast calculus. For all these reasons, it is an efficient method in the case of noisy signals as it will be confirmed in several examples

    Wave scattering by randomly shaped objects

    Full text link

    Error Inhibiting Block One-step Schemes for Ordinary Differential Equations

    Full text link

    Staircase-free finite-difference time-domain formulation for general materials in complex geometries

    No full text
    A stable Cartesian grid staircase-free finite-difference time-domain formulation for arbitrary material distributions in general geometries is introduced. It is shown that the method exhibits higher accuracy than the classical Yee scheme for complex geometries since the computational representation of physical structures is not of a staircased nature, Furthermore, electromagnetic boundary conditions are correctly enforced. The method significantly reduces simulation times as fewer points per wavelength are needed to accurately resolve the wave and the geometry. Both perfect electric conductors and dielectric structures have been investigated, Numerical results are presented and discussed
    corecore