94 research outputs found
Fusion of secretory vesicles isolated from rat liver
Secretory vesicles isolated from rat liver were found to fuse after exposure to Ca2+. Vescle fusion is characterized by the occurrence of twinned vesicles with a continuous cleavage plane between two vesicles in freeze-fracture electron microscopy. The number of fused vesicles increases with increasing Ca2+-concentrations and is half maximal around 10–6 m. Other divalent cations (Ba2+, Sr2+, and Mg2+) were ineffective. Mg2+ inhibits Ca2+-induced fusion. Therefore, the fusion of secretory vesiclesin vitro is Ca2+ specific and exhibits properties similar to the exocytotic process of various secretory cells.
Various substances affecting secretionin vivo (microtubular inhibitors, local anethetics, ionophores) were tested for their effect on membrane fusion in our system.
The fusion of isolated secretory vesicles from liver was found to differ from that of pure phospholipid membranes in its temperature dependence, in its much lower requirement for Ca2+, and in its Ca2+-specificity. Chemical and enzymatic modifications of the vesicle membrane indicate that glycoproteins may account for these differences
Role of Hydrogen-Bonding in Nonelectrolyte Diffusion through Dense Artificial Membranes
The diffusion of two series of alcohols and amides through complex cellulose acetate membranes was studied. The thin dense part of these membranes behaves as a nonporous layer of low water content. In this layer, called the skin, the solute diffusion coefficients, ω, depend upon size, steric configuration, and the partition coefficient, K8, between membrane and bathing solution. From the experimental values of ω and K8, the over-all friction, f, experienced by the solutes in the membrane was computed. It was found that f depends upon the chemical nature of the solute and is related to hydrogen-bonding ability. In the coarse, porous layer of the cellulose acetate membrane, diffusion occurs mainly through aqueous channels. In this instance also the hydrogen-bonding ability of the solute seems to exercise a smaller but significant influence
Measurement of Na-K pump current in acinar cells of rat lacrimal glands
Isolated cells from rat lacrimal glands were voltage clamped using the tight-seal whole-cell recording technique. The intracellular solution contained ATP and an elevated Na concentration (70 mM). Removing external K ions elicited an inward current shift. Ouabain (0.5 mM) induced an inward current shift of identical amplitude, but with slower kinetics. In the presence of ouabain, removal of K ions did not alter the cell current. The potassium- and ouabain-sensitive current was outward between -120 and +20 mV, and its amplitude decreased below -60 mV. This current was highly sensitive to temperature, and was not affected by blockers of the K channels which are present in these cells. It was attributed to an inhibition of the Na-K pump. The Na-K pump current was estimated to be 15 pA for an average acinar cell at physiological temperature, with 70 mM internal Na ions and 20 mM external K ions. Implications of this value in terms of electrolyte secretion are discussed
- …
