63 research outputs found
New constraints on the location of P9 obtained with the INPOP19a planetary ephemeris
Context. We used the new released INPOP19a planetary ephemerides benefiting from Jupiter-updated positions by the Juno mission and reanalyzed Cassini observations. Aims. We test possible locations of the unknown planet P9. To do this, we used the perturbations it produces on the orbits of the outer planets, more specifically, on the orbit of Saturn. Methods. Two statistical criteria were used to identify possible acceptable locations of P9 according to (i) the difference in planetary positions when P9 is included compared with the propagated covariance matrix, and (ii) the χ2 likelihood of postfit residuals for ephemerides when P9 is included. Results. No significant improvement of the residuals was found for any of the simulated locations, but we provide zones that induce a significant degradation of the ephemerides. Conclusions. Based on the INPOP19a planetary ephemerides, we demonstrate that if P9 exists, it cannot be closer than 500 AU with a 5 M⊕ and no closer than 650 AU with a 10 M⊕ . We also show that there is no clear zone that would indicate the positive existence of planet P9, but there are zones for which the existence of P9 is compatible with the 3σ accuracy of the INPOP planetary ephemerides
Evolution of INPOP planetary ephemerides and Bepi-Colombo simulations
We give here a detailed description of the latest INPOP planetary ephemerides
INPOP20a. We test the sensitivity of the Sun oblateness determination obtained
with INPOP to different models for the Sun core rotation. We also present new
evaluations of possible GRT violations with the PPN parameters ,
and . With a new method for selecting acceptable alternative
ephemerides we provide conservative limits of about and
for and respectively using the
present day planetary data samples. We also present simulations of Bepi-Colombo
range tracking data and their impact on planetary ephemeris construction. We
show that the use of future BC range observations should improve these
estimates, in particular . Finally, interesting perspectives for the
detection of the Sun core rotation seem to be reachable thanks to the BC
mission and its accurate range measurements in the GRT frame.Comment: Proceedings of the IAU Symposium 364 "Multi-scale dynamics of space
objects
The Carlina-type diluted telescope: Stellar fringes on Deneb
Context. The performance of interferometers has largely been increased over
the last ten years. But the number of observable objects is still limited due
to the low sensitivity and imaging capability of the current facilities.
Studies have been done to propose a new generation of interferometers. Aims.
The Carlina concept studied at the Haute-Provence Observatory consists in an
optical interferometer configured as a diluted version of the Arecibo radio
telescope: above the diluted primary mirror made of fixed co-spherical
segments, a helium balloon or cables suspended between two mountains and/or
pylons, carries a gondola containing the focal optics. This concept does not
require delay lines. Methods. Since 2003, we have been building a technical
demonstrator of this diluted telescope. The main goals of this project were to
find the opto-mechanical solutions to stabilize the optics attached under
cables at several tens of meters above the ground, and to characterize this
diluted telescope under real conditions. In 2012, we have obtained metrology
fringes, and co-spherized the primary mirrors within one micron accuracy. In
2013, we have tested the whole optical train: servo loop, metrology, and the
focal gondola. Results. We obtained stellar fringes on Deneb in September 2013.
In this paper, we present the characteristics of these observations: quality of
the guiding, S /N reached, and possible improvements for a future system.
Conclusions. It is an important step that demonstrates the feasibility of
building a diluted telescope using cables strained between cliffs or pylons.
Carlina, like the MMT or LBT, could be one of the first members of a new class
of telescopes named Large Diluted Telescopes. Its optical architecture has many
advantages for future projects: Planet Formation Imager, Post-ELTs,
Interferometer in space.Comment: 8 pages, 7 figures, Astronomy & Astrophysic
Correction to: Gaia-DR2 asteroid observations and INPOP planetary ephemerides
International audienc
- …