141 research outputs found

    Modeling NAPL Dissolution from Pendular Rings in Idealized Porous Media

    Get PDF
    The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young‐Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL‐water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection‐diffusion equation in a capillary tube assuming Hagen‐Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL‐water interface in an organic‐wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water‐wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration. Abstract © AGU

    Modeling NAPL dissolution from pendular rings in idealized porous media

    Get PDF
    The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young‐Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL‐water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection‐diffusion equation in a capillary tube assuming Hagen‐Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL‐water interface in an organic‐wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water‐wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.Key Points:Exact solution to the Young‐Laplace equation for pendular ringsTheoretical determination of the mass transfer rate coefficient under hydrophobic conditionsPredicts similar NAPL dissolution rates for oil‐wet and water‐wet conditionsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145506/1/wrcr21729.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145506/2/wrcr21729_am.pd

    The Driving Behavior Survey: scale construction and validation.

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.Although long recognized in the clinical literature, problematic behavior characteristic of anxious drivers has received little empirical attention. The current research details development of a measure of anxious driving behavior conducted across three studies. Factor analytic techniques identified three dimensions of maladaptive behaviors across three college samples: anxiety-based performance deficits, exaggerated safety/caution behavior, and anxiety-related hostile/aggressive behavior. Performance deficits evidenced convergent associations with perceived driving skill and were broadly related to driving fear. Safety/caution behaviors demonstrated convergence with overt travel avoidance, although this relationship was inconsistent across studies. Safety/caution scores were associated specifically with accident- and social-related driving fears. Hostile/aggressive behaviors evidenced convergent relationships with driving anger and were associated specifically with accident-related fear. Internal consistencies were adequate, although some test-retest reliabilities were marginal in the unselected college sample. These data provide preliminary evidence for utility of the measure for both research and clinical practice

    Impact of tetrachloroethylene-contaminated drinking water on the risk of breast cancer: Using a dose model to assess exposure in a case-control study

    Get PDF
    BACKGROUND: A population-based case-control study was undertaken in 1997 to investigate the association between tetrachloroethylene (PCE) exposure from public drinking water and breast cancer among permanent residents of the Cape Cod region of Massachusetts. PCE, a volatile organic chemical, leached from the vinyl lining of certain water distribution pipes into drinking water from the late 1960s through the early 1980s. The measure of exposure in the original study, referred to as the relative delivered dose (RDD), was based on an amount of PCE in the tap water entering the home and estimated with a mathematical model that involved only characteristics of the distribution system. METHODS: In the current analysis, we constructed a personal delivered dose (PDD) model that included personal information on tap water consumption and bathing habits so that inhalation, ingestion, and dermal absorption were also considered. We reanalyzed the association between PCE and breast cancer and compared the results to the original RDD analysis of subjects with complete data. RESULTS: The PDD model produced higher adjusted odds ratios than the RDD model for exposures > 50(th )and >75(th )percentile when shorter latency periods were considered, and for exposures < 50(th )and >90(th )percentile when longer latency periods were considered. Overall, however, the results from the PDD analysis did not differ greatly from the RDD analysis. CONCLUSION: The inputs that most heavily influenced the PDD model were initial water concentration and duration of exposure. These variables were also included in the RDD model. In this study population, personal factors like bath and shower temperature, bathing frequencies and durations, and water consumption did not differ greatly among subjects, so including this information in the model did not significantly change subjects' exposure classification

    The University of Michigan Dioxin Exposure Study: Population Survey Results and Serum Concentrations for Polychlorinated Dioxins, Furans, and Biphenyls

    Get PDF
    Background: The University of Michigan Dioxin Exposure Study was undertaken to address concerns that the discharge of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the Dow Chemical Company in the Midland, Michigan, area had resulted in contamination of soils in the Tittabawassee River floodplain and the city of Midland, leading to an increase in residents’ body burdens of these compounds. Objective: In this article we present descriptive statistics from the resident survey and sampling of human serum, household dust, and soil and compare them with other published values. Methods: From a multistage random sample of populations in four areas of Midland and Saginaw counties and from a distant referent population, we interviewed 946 adults, who also donated blood for analysis of PCDDs, PCDFs, and polychlorinated biphenyls (PCBs). Samples of household dust and house perimeter soil were collected from consenting subjects who owned their property. Results: All five study populations were comparable in age, race, sex, and length of residence in their current home. Regional differences existed in employment history, personal contact with contaminated soils, and consumption of fish and game from contaminated areas. Median soil concentrations were significantly increased around homes in the Tittabawassee River floodplain (11.4 ppt) and within the city of Midland (58.2 ppt) compared with the referent population (3.6 ppt). Median serum toxic equivalencies were significantly increased in people who lived in the floodplain (23.2 ppt) compared with the referent population (18.5 ppt). Conclusions: Differences in serum dioxin concentrations among the populations were small but statistically significant. Regression modeling is needed to identify whether the serum concentrations of PCDDs, PCDFs, and PCBs are associated with contaminated soils, household dust, and other factors

    Risk of breast cancer following exposure to tetrachloroethylene-contaminated drinking water in Cape Cod, Massachusetts: reanalysis of a case-control study using a modified exposure assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tetrachloroethylene (PCE) is an important occupational chemical used in metal degreasing and drycleaning and a prevalent drinking water contaminant. Exposure often occurs with other chemicals but it occurred alone in a pattern that reduced the likelihood of confounding in a unique scenario on Cape Cod, Massachusetts. We previously found a small to moderate increased risk of breast cancer among women with the highest exposures using a simple exposure model. We have taken advantage of technical improvements in publically available software to incorporate a more sophisticated determination of water flow and direction to see if previous results were robust to more accurate exposure assessment.</p> <p>Methods</p> <p>The current analysis used PCE exposure estimates generated with the addition of water distribution modeling software (EPANET 2.0) to test model assumptions, compare exposure distributions to prior methods, and re-examine the risk of breast cancer. In addition, we applied data smoothing to examine nonlinear relationships between breast cancer and exposure. We also compared a set of measured PCE concentrations in water samples collected in 1980 to modeled estimates.</p> <p>Results</p> <p>Thirty-nine percent of individuals considered unexposed in prior epidemiological analyses were considered exposed using the current method, but mostly at low exposure levels. As a result, the exposure distribution was shifted downward resulting in a lower value for the 90th percentile, the definition of "high exposure" in prior analyses. The current analyses confirmed a modest increase in the risk of breast cancer for women with high PCE exposure levels defined by either the 90th percentile (adjusted ORs 1.0-1.5 for 0-19 year latency assumptions) or smoothing analysis cut point (adjusted ORs 1.3-2.0 for 0-15 year latency assumptions). Current exposure estimates had a higher correlation with PCE concentrations in water samples (Spearman correlation coefficient = 0.65, p < 0.0001) than estimates generated using the prior method (0.54, p < 0.0001).</p> <p>Conclusions</p> <p>The incorporation of sophisticated flow estimates in the exposure assessment method shifted the PCE exposure distribution downward, but did not meaningfully affect the exposure ranking of subjects or the strength of the association with the risk of breast cancer found in earlier analyses. Thus, the current analyses show a slightly elevated breast cancer risk for highly exposed women, with strengthened exposure assessment and minimization of misclassification by using the latest technology.</p

    Engineering supported membranes for cell biology

    Get PDF
    Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology
    corecore