26 research outputs found

    Angle-resolved photoemission study of USb2: the 5f band structure

    Full text link
    Single crystal antiferromagnetic USb2 was studied at 15K by angle-resolved photoemission with an overall energy resolution of 24 meV. The measurements unambiguously show the dispersion of extremely narrow bands situated near the Fermi level. The peak at the Fermi level represents the narrowest feature observed in 5f-electron photoemission to date. The natural linewidth of the feature just below the Fermi level is not greater than 10 meV. Normal emission data indicate a three dimensional aspect to the electronic structure of this layered material.Comment: 22 pages including figure

    Temporal, seasonal and weather effects on cycle volume: an ecological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cycling has the potential to provide health, environmental and economic benefits but the level of cycling is very low in New Zealand and many other countries. Adverse weather is often cited as a reason why people do not cycle. This study investigated temporal and seasonal variability in cycle volume and its association with weather in Auckland, New Zealand's largest city.</p> <p>Methods</p> <p>Two datasets were used: automated cycle count data collected on Tamaki Drive in Auckland by using ZELT Inductive Loop Eco-counters and weather data (gust speed, rain, temperature, sunshine duration) available online from the National Climate Database. Analyses were undertaken using data collected over one year (1 January to 31 December 2009). Normalised cycle volumes were used in correlation and regression analyses to accommodate differences by hour of the day and day of the week and holiday.</p> <p>Results</p> <p>In 2009, 220,043 bicycles were recorded at the site. There were significant differences in mean hourly cycle volumes by hour of the day, day type and month of the year (<it>p </it>< 0.0001). All weather variables significantly influenced hourly and daily cycle volumes (<it>p </it>< 0.0001). The cycle volume increased by 3.2% (hourly) and 2.6% (daily) for 1°C increase in temperature but decreased by 10.6% (hourly) and 1.5% (daily) for 1 mm increase in rainfall and by 1.4% (hourly) and 0.9% (daily) for 1 km/h increase in gust speed. The volume was 26.2% higher in an hour with sunshine compared with no sunshine, and increased by 2.5% for one hour increase in sunshine each day.</p> <p>Conclusions</p> <p>There are temporal and seasonal variations in cycle volume in Auckland and weather significantly influences hour-to-hour and day-to-day variations in cycle volume. Our findings will help inform future cycling promotion activities in Auckland.</p

    Environmental settings for selected US Department of Energy installations - support information for the programmatic environmental impact statement and the baseline environmental management report

    No full text
    This report contains the environmental setting information developed for 25 U.S. Department of Energy (DOE) installations in support of the DOE`s Programmatic Environmental Impact Study (PEIS) and the Baseline Environmental Management Report (BEMR). The common objective of the PEIS and the BEMR is to provide the public with information about the environmental contamination problems associated with major DOE facilities across the country, and to assess the relative risks that radiological and hazardous contaminants pose to the public, onsite workers, and the environment. Environmental setting information consists of the site-specific data required to model (using the Multimedia Environmental Pollutant Assessment System) the atmospheric, groundwater, and surface water transport of contaminants within and near the boundaries of the installations. The environmental settings data describes the climate, atmospheric dispersion, hydrogeology, and surface water characteristics of the installations. The number of discrete environmental settings established for each installation was governed by two competing requirements: (1) the risks posed by contaminants released from numerous waste sites were to be modeled as accurately as possible, and (2) the modeling required for numerous release sites and a large number of contaminants had to be completed within the limits imposed by the PEIS and BEMR schedule. The final product is the result of attempts to balance these competing concerns in a way that minimizes the number of settings per installation in order to meet the project schedule while at the same, time providing adequate, if sometimes highly simplified, representations of the different areas within an installation. Environmental settings were developed in conjunction with installation experts in the fields of meteorology, geology, hydrology, and geochemistry
    corecore