2,908 research outputs found

    Study on the thermal stability of Polystyryl surfactants and its modified clay nanocomposites

    Get PDF
    Five oligomeric styrene surfactants, N,N,N-trimethylpolystyrylammonium, N,N-dimethyl-N-benzylpolystyrylammonium, N,N-dimethyl-N-hexadecylpolystyrylammonium, 1,2-dimethyl-3-polystyrylimidazolium, and triphenylpolystyrylphosphonium chlorides were synthesized and used to prepare organically modified clays. Both styrene and methyl methacrylate nanocomposites were prepared by melt blending and the type of nanocomposite was evaluated by X-ray diffraction and transmission electron microscopy. The thermal stability of the organically modified clays and the nanocomposites were studied by thermogravimetric analysis; these systems do give clays which have good thermal stability and may be useful for melt blending with polymers that must be processed at higher temperatures

    Fire properties of styrenic polymer–clay nanocomposites based on an oligomerically-modified clay

    Get PDF
    An oligomerically-modified clay has been used to fabricate nanocomposites with styrenic polymers, such as polystyrene, high-impacted polystyrene, poly(styrene-co-acrylonitrile) and acrylonitrile–butadiene–styrene by melt blending. The clay dispersion was evaluated by X-ray diffraction and bright field transmission electron microscopy. All of the nanocomposites have a mixed delaminated/intercalated structure. The fire properties of nanocomposites were evaluated by cone calorimetry and the mechanical properties were also evaluated

    Methyl Methacrylate Oligomerically-Modified Clay and its Poly (Methyl Methacrylate) Nanocomposites

    Get PDF
    A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays

    Novel Polymerically-Modified Clays Permit the Preparation of Intercalated and Exfoliated Nanocomposites of Styrene and its Copolymers by Melt Blending

    Get PDF
    Two new organically-modified clays have been made and used to produce nanocomposites of polystyrene, high impact polystyrene and acrylonitrile–butadiene–styrene terploymer. At a minimum, intercalated nanocomposites of all of these polymers have been produced by melt blending in a Brabender mixer and, in some cases, exfoliated nanocomposites have been obtained. The systems have all been characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, cone calorimetry and the measurement of mechanical properties. These novel new clays open new opportunities for melt blending of polymers with clays to obtain nanocomposites with important properties

    Styrenic Polymer Nanocomposites Based on an Oligomerically-Modified Clay with High Inorganic Content

    Get PDF
    Clay was modified with an oligomeric surfactant containing styrene and lauryl acrylate units along with a small amount of vinylbenzyl chloride to permit the formation of an ammonium salt so that this can be attached to a clay. The oligomerically-modified clay contains 50% inorganic clay, and styrenic polymer nanocomposites, including those of polystyrene (PS), high-impact polystyrene (HIPS), styrene–acrylonitrile copolymer (SAN) and acrylonitrile–butadiene–styrene (ABS), were prepared by melt blending. The morphologies of the nanocomposites were evaluated by X-ray diffraction and transmission electron microscopy. Mixed intercalated/delaminated nanocomposites were formed for SAN and ABS while largely immiscible nanocomposites were formed for PS and HIPS. The thermal stability and fire properties were evaluated using thermogravimetric analysis and cone calorimetry, respectively. The plasticization from the oligomeric surfactant was suppressed and the tensile strength and Young\u27s modulus were improved, compared to similar oligomerically-modified clays with higher organic content

    Fire Retardancy of Vinyl Ester Nanocomposites: Synergy with Phosphorus-Based Fire Retardants

    Get PDF
    Vinyl ester (PVE) nanocomposites were prepared using both clay and polyhedral oligosilsesquioxanes (POSS) as the nano-dimensional material. From cone calorimetric data, it was shown that both POSS and clay affect the flammability of the nanocomposites to the same extent. To improve on the flame retardancy, the nanocomposites were combined with phosphorous-containing fire retardants (FRs) and the result compared to the benchmark halogen-containing system. The use of the cone calorimeter to investigate the fire properties of these nanocomposites showed a great reduction in peak heat release rate (PHRR) in the presence of phosphate and slight improvements in average mass loss rate (AMLR) while thermogravimetric analysis showed improvement in char yield in the presence of phosphate. Several different organically modified clays were used and they affected the flammability to different extents. The time that the resin and clay were mixed and the atmosphere in which the reaction was carried out do not have an effect on the flammability and thermal stability of the nanocomposites. The effect of curing temperature on the clay dispersion and flammability was also investigated

    Styrenic Nanocomposites Prepared using a Novel Biphenyl-Containing Clay

    Get PDF
    Montmorillonite was organically modified using an ammonium salt containing 4-acetylbiphenyl. This clay (BPNC16 clay) was used to prepare polystyrene (PS), acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) nanocomposites. Polystyrene nanocomposites were prepared both by in situ bulk polymerisation and melt blending processes, while the ABS and HIPS nanocomposites were prepared only by melt blending. X-ray diffraction and transmission electron microscopy were used to confirm nanocomposite formation. Thermogravimetric analysis was used to evaluate thermal stability and the flammability properties were evaluated using cone calorimetry. By thermogravimetry, BPNC16 clay was found to show high thermal stability, and by cone calorimetry, a decrease in both the peak heat release rate and the mass loss rate was observed for the nanocomposites

    Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically-modified clay

    Get PDF
    Nanocomposites of polystyrene, high impact polystyrene, acrylonitrile–butadiene–styrene terpolymer, polypropylene, and polyethylene were prepared using a methyl methacrylate oligomerically-modified clay by melt blending and the thermal stability and fire retardancy were studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed morphology, depending on the polymer

    Polyethylene and Polypropylene Nanocomposites based upon an Oligomerically-Modified Clay

    Get PDF
    Montmorillonite clay was modified with an oligomeric surfactant, which was then melt blended with polyethylene and polypropylene in a Brabender mixer. The morphology was characterized by X-ray diffraction and transmission electron microscopy, while thermal stability was evaluated from thermogravimetric analysis and the fire properties by cone calorimetry. The nanocomposites are best described as mixed immiscible/intercalated/delaminated systems and the reduction in peak heat release rate is about 40% at 5% inorganic clay loading

    Hardware-in-the-loop tuning of a feedback controller for a buck converter using a GA

    Get PDF
    This paper presents a methodology for tuning a PID-based feedback controller for a buck converter using the ITAE controller performance index. The controller parameters are optimized to ensure that a reasonable transient response can be achieved whilst retaining stable operation. Experimental results demonstrate the versatility of the on-line tuning methodology
    corecore