44,046 research outputs found

    Future wave climate over the west-European shelf seas

    Get PDF
    In this paper, we investigate changes in the wave climate of the west-European shelf seas under global warming scenarios. In particular, climate change wind fields corresponding to the present (control) time-slice 1961–2000 and the future (scenario) time-slice 2061–2100 are used to drive a wave generation model to produce equivalent control and scenario wave climate. Yearly and seasonal statistics of the scenario wave climates are compared individually to the corresponding control wave climate to identify relative changes of statistical significance between present and future extreme and prevailing wave heights. Using global, regional and linked global–regional wind forcing over a set of nested computational domains, this paper further demonstrates the sensitivity of the results to the resolution and coverage of the forcing. It suggests that the use of combined forcing from linked global and regional climate models of typical resolution and coverage is a good option for the investigation of relative wave changes in the region of interest of this study. Coarse resolution global forcing alone leads to very similar results over regions that are highly exposed to the Atlantic Ocean. In contrast, fine resolution regional forcing alone is shown to be insufficient for exploring wave climate changes over the western European waters because of its limited coverage. Results obtained with the combined global–regional wind forcing showed some consistency between scenarios. In general, it was shown that mean and extreme wave heights will increase in the future only in winter and only in the southwest of UK and west of France, north of about 44–45° N. Otherwise, wave heights are projected to decrease, especially in summer. Nevertheless, this decrease is dominated by local wind waves whilst swell is found to increase. Only in spring do both swell and local wind waves decrease in average height

    Direct visualization of iron sheath shielding effect in MgB_2 superconducting wires

    Full text link
    Local magneto-optical imaging and global magnetization measurement techniques were used in order to visualize shielding effects in the superconducting core of MgB_2 wires sheathed by ferromagnetic iron (Fe). The magnetic shielding can provide a Meissner-like state in the superconducting core in applied magnetic fields up to ~1T. The maximum shielding fields are shown to correlate with the saturation fields of magnetization in Fe-sheaths. The shielding has been found to facilitate the appearance of an overcritical state, which is capable of achieving a critical current density (J_c) in the core which is larger than J_c in the same wire without the sheath by a factor of ~2. Other effects caused by the magnetic interaction between the sheath and the superconducting core are discussed.Comment: 4 pages, 3 figure

    Valence bond solid order near impurities in two-dimensional quantum antiferromagnets

    Full text link
    Recent scanning tunnelling microscopy (STM) experiments on underdoped cuprates have displayed modulations in the local electronic density of states which are centered on a Cu-O-Cu bond (Kohsaka et. al., cond-mat/0703309). As a paradigm of the pinning of such bond-centered ordering in strongly correlated systems, we present the theory of valence bond solid (VBS) correlations near a single impurity in a square lattice antiferromagnet. The antiferromagnet is assumed to be in the vicinity of a quantum transition from a magnetically ordered Neel state to a spin-gap state with long-range VBS order. We identify two distinct classes of impurities: i) local modulation in the exchange constants, and ii) a missing or additional spin, for which the impurity perturbation is represented by an uncompensated Berry phase. The `boundary' critical theory for these classes is developed: in the second class we find a `VBS pinwheel' around the impurity, accompanied by a suppression in the VBS susceptibility. Implications for numerical studies of quantum antiferromagnets and for STM experiments on the cuprates are noted.Comment: 41 pages, 6 figures; (v2) Minor changes in terminology, added reference

    Modulation of the high mobility two-dimensional electrons in Si/SiGe using atomic-layer-deposited gate dielectric

    Full text link
    Metal-oxide-semiconductor field-effect transistors (MOSFET's) using atomic-layer-deposited (ALD) Al2_2O3_3 as the gate dielectric are fabricated on the Si/Si1x_{1-x}Gex_x heterostructures. The low-temperature carrier density of a two-dimensional electron system (2DES) in the strained Si quantum well can be controllably tuned from 2.5×1011\times10^{11}cm2^{-2} to 4.5×1011\times10^{11}cm2^{-2}, virtually without any gate leakage current. Magnetotransport data show the homogeneous depletion of 2DES under gate biases. The characteristic of vertical modulation using ALD dielectric is shown to be better than that using Schottky barrier or the SiO2_2 dielectric formed by plasma-enhanced chemical-vapor-deposition(PECVD).Comment: 3 pages Revtex4, 4 figure

    Quadratic Bell inequalities as tests for multipartite entanglement

    Full text link
    This letter presents quantum mechanical inequalities which distinguish, for systems of NN spin-\half particles (N>2N>2), between fully entangled states and states in which at most N1N-1 particles are entangled. These inequalities are stronger than those obtained by Gisin and Bechmann-Pasquinucci [Phys.\ Lett. A {\bf 246}, 1 (1998)] and by Seevinck and Svetlichny [quant-ph/0201046].Comment: 4 pages, including 1 figure. Typo's removed and one proof simplified in revised versio
    corecore