20,800 research outputs found

    The Higgs masses and explicit CP violation in the gluino-axion model

    Get PDF
    In this work, we adress the phenomenological consequences of explicit CP violation on direct Higgs-boson searches at high energy colliders. Having a restricted parameter space, we concentrate on the recently proposed gluino-axion model, and investigate the CP violation capability of the model subject to the recent experimental data. It is shown that the Higgs masses as well as their CP compositions are quite sensitive to the supersymmetric CP phases. The lightest Higgs is found to be nearly CP even to a good approximation whilst the remaining two heavy scalars do not have definite CP parities.Comment: 20 pp, 14 eps figs, title is changed, the manuscript is improved using the latest experimental data, some figures and references adde

    s-Channel Production of MSSM Higgs Bosons at a Muon Collider with Explicit CP Violation

    Get PDF
    A muon collider with controllable energy resolution and transverse beam polarization provides a powerful probe of the Higgs sector in the minimal supersymmetric standard model with explicit CP violation, through s-channel production of Higgs bosons. The production rates and the CP-even and CP-odd transverse-polarization asymmetries are complementary in diagnosing CP violation in the Higgs sector.Comment: 12 pages, 5 figures. Some statements for clarity and references added. To appear in Phys. Rev.

    Determination of Optimum Frame Rates for Observation of Construction Operations from Time-Lapse Movies

    Get PDF
    Construction professionals have been using time-lapse movies in monitoring construction operations. However, some amount of detail is always lost in the interval between two consecutive frames in a time-lapse movie. This poses the question: By how much can the frame rate be lowered from the standard 30fps (frames per second) to allow for the accurate observation of construction operations from a time-lapse movie? This paper addresses the problem by establishing the optimum frame rates for observation of activities related to mortar mixing and block handling. The activities were first recorded at the standard rate of 30fps. Using the Adobe Premier Pro video editing software, the records were then segregated into still images from which 15 different time-lapse movies of various time intervals were generated. The movies were then shown to 25 Construction Managers. A structured questionnaire was employed to capture the level of accuracy with which Construction Managers could interpret the job site situation from each movie. The results suggest that 1fpm (frame per minute) is sufficient for the accurate tracking of labourers involved in mortar mixing while 1 frame in every 20 seconds is sufficient for accurate identification of number of cement bags used. However, for tracking number of blocks off-loaded, and those damaged, 1 frame in every 2 seconds is required

    Probing MSSM Higgs Sector with Explicit CP Violation at a Photon Linear Collider

    Get PDF
    The CP properties of Higgs bosons can be probed through their s-channel resonance productions via photon-photon collisions by use of circularly and/or linearly polarized backscattered laser photons at a TeV-scale linear e^+ e^- collider. Exploiting this powerful tool, we investigate in detail the Higgs sector of the minimal supersymmetric Standard Model with explicit CP violation.Comment: 18 pages, 5 figures. Some comments added and typos corrected. To appear in Phys. Rev.

    Probing scalar-pseudoscalar mixing in the CP violating MSSM at high-energy e+ee^+e^- colliders

    Full text link
    We study the production processes e+eHi0Ze^+e^-\to H^0_iZ, Hi0Hj0H^0_iH^0_j and Hi0νeνeH^0_i\nu_e\overline \nu_e in the context of the CP violating MSSM. In a given channel we show that the cross-section for all i (=1,2,3) can be above 0.1 fb provided M_{H_{2,3}}\la 300 GeV. This should be detectable at a Next Linear Collider and would provide evidence for scalar-pseudoscalar mixing.Comment: 17 pages, RevTex, 4 ps figures, figure 4 changed, minor modifications to text, version to appear in PR

    Weak Isospin Violations in Charged and Neutral Higgs Couplings from SUSY Loop Corrections

    Full text link
    Supersymmetric QCD and supersymmetric electroweak loop corrections to the violations of weak isospin to Yukawa couplings are investigated. Specifically it involves an analysis of the supersymmetric loop corrections to the Higgs couplings to the third generation quarks and leptons. Here we analyze the SUSY loop corrections to the charged Higgs couplings which are then compared with the supersymmetric loop corrections to the neutral Higgs couplings previously computed. It is found that the weak isospin violations can be quite significant, i.e, as much as 40-50% or more of the total loop correction to the Yukawa coupling. The effects of CP phases are also studied and it is found that these effects can either enhance or suppress the weak isospin violations. We also investigate the weak isospin violation effects on the branching ratio BR(Htˉb)/BR(Hνˉττ)BR(H^-\to\bar t b)/ BR(H^-\to \bar\nu_{\tau}\tau^-) and show that the effects are sensitive to CP phases. Thus an accurate measurement of this branching ratio along with the branching ratio of the neutral Higgs boson decays can provide a measure of weak isospin violation along with providing a clue to the presence of supersymmetry.Comment: 20 pages, 9 figure

    Relaxation of the Dynamical Gluino Phase and Unambiguous Electric Dipole Moments

    Full text link
    We propose a new axionic solution of the strong CP problem with a Peccei-Quinn mechanism using the gluino rather than quarks. The spontaneous breaking of this new global U(1) at 10^{11} GeV also generates the supersymmetry breaking scale of 1 TeV (solving the so-called \mu problem at the same time) and results in the MSSM (Minimal Supersymmetric Standard Model) with R parity conservation. In this framework, electric dipole moments become calculable without ambiguity.Comment: Typos corrected and a footnote added, 10 p

    On the EDM Cancellations in D-brane models

    Get PDF
    We analyze the possibility of simultaneous electron, neutron, and mercury electric dipole moment (EDM) cancellations in the mSUGRA and D--brane models. We find that the mercury EDM constraint practically rules out the cancellation scenario in D-brane models whereas in the context of mSUGRA it is still allowed with some fine-tuning.Comment: 10 pages, to appear in Phys. Rev. Let
    corecore