493,586 research outputs found

    Lippmann-Schwinger description of multiphoton ionization

    Full text link
    We outline a formalism and develop a computational procedure to treat the process of multiphoton ionization (MPI) of atomic targets in strong laser fields. We treat the MPI process nonperturbatively as a decay phenomenon by solving a coupled set of the integral Lippmann-Schwinger equations. As basic building blocks of the theory we use a complete set of field-free atomic states, discrete and continuous. This approach should enable us to provide both the total and differential cross-sections of MPI of atoms with one or two electrons. As an illustration, we apply the proposed procedure to a simple model of MPI from a square well potential and to the hydrogen atom.Comment: 25 pages, 3 figure

    Coulomb renormalization and ratio of proton and neutron asymptotic normalization coefficients for mirror nuclei

    Full text link
    Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants playing important role in nuclear reactions, nuclear structure and nuclear astrophysics. In this paper the physical reasons of the Coulomb renormalization of the ANC are addressed. Using Pinkston-Satchler equation the ratio for the proton and neutron ANCs of mirror nuclei is obtained in terms of the Wronskians from the radial overlap functions and regular solutions of the two-body Schr\"odinger equation with the short-range interaction excluded. This ratio allows one to use microscopic overlap functions for mirror nuclei in the internal region, where they are the most accurate, to correctly predict the ratio of the ANCs for mirror nuclei, which determine the amplitudes of the tails of the overlap functions. Calculations presented for different nuclei demonstrate the Coulomb renormalization effects and independence of the ratio of the nucleon ANCs for mirror nuclei on the channel radius. This ratio is valid both for bound states and resonances. One of the goals of this paper is to draw attention on the possibility to use the Coulomb renormalized ANCs rather than the standard ones especially when the standard ANCs are too large.Comment: 20 pages, 14 figure

    Basins of attraction of a nonlinear nanomechanical resonator

    Get PDF
    We present an experiment that systematically probes the basins of attraction of two fixed points of a nonlinear nanomechanical resonator and maps them out with high resolution. We observe a separatrix which progressively alters shape for varying drive strength and changes the relative areas of the two basins of attraction. The observed separatrix is blurred due to ambient fluctuations, including residual noise in the drive system, which cause uncertainty in the preparation of an initial state close to the separatrix. We find a good agreement between the experimentally mapped and theoretically calculated basins of attraction

    Boson-assisted tunneling in layered metals

    Full text link
    A theory for boson-assisted tunneling via randomly distributed resonant states in a layered metals is developed. As particular examples, we consider the electron-phonon interaction and the interaction between localized and conduction electrons. The theory is applied to explain a non-monotonic variation of the out-plane resistivity with temperature observed in quasi-two-dimensional metals.Comment: 14 pages, 5 figure

    Oscillations of the superconducting critical current in Nb-Cu-Ni-Cu-Nb junctions

    Full text link
    We report on experimental studies of superconductor-ferromagnet layered structures. Strong oscillations of the critical supercurrent were observed with the thickness variation of the ferromagnet. Using known microscopic parameters of Ni, we found reasonable agreement between the period of oscillations and the decay of the measured critical current, and theoretical calculations.Comment: 5 page

    Magnetoresistance of atomic-sized contacts: an ab-initio study

    Full text link
    The magnetoresistance (MR) effect in metallic atomic-sized contacts is studied theoretically by means of first-principle electronic structure calculations. We consider three-atom chains formed from Co, Cu, Si, and Al atoms suspended between semi-infinite Co leads. We employ the screened Korringa-Kohn-Rostoker Green's function method for the electronic structure calculation and evaluate the conductance in the ballistic limit using the Landauer approach. The conductance through the constrictions reflects the spin-splitting of the Co bands and causes high MR ratios, up to 50%. The influence of the structural changes on the conductance is studied by considering different geometrical arrangements of atoms forming the chains. Our results show that the conductance through s-like states is robust against geometrical changes, whereas the transmission is strongly influenced by the atomic arrangement if p or d states contribute to the current.Comment: Revised version, presentation of results is improved, figure 2 is splitted to two figure

    Conventional and charge six superfluids from melting hexagonal Fulde-Ferrell-Larkin-Ovchinnikov phases in two dimensions

    Full text link
    We consider defect mediated melting of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and pair density wave (PDW) phases in two dimensions. Examining mean-field ground states in which the spatial oscillations of the FFLO/PDW superfluid order parameter exhibit hexagonal lattice symmetry, we find that thermal melting leads to a variety of novel phases. We find that a spatially homogeneous charge six superfluid can arise from melting a hexagonal vortex-anitvortex lattice FFLO/PDW phase. The charge six superfluid has an order parameter corresponding to a bound state of six fermions. We further find that a hexagonal vortex-free FFLO/PDW phase can melt to yield a conventional (charge two) homogeneous superfluid. A key role is played by topological defects that combine fractional vortices of the superfluid order and fractional dislocations of the lattice order.Comment: 8 pages, 3 figure

    Generalized Faddeev equations in the AGS form for deuteron stripping with explicit inclusion of target excitations and Coulomb interaction

    Full text link
    Theoretical description of reactions in general, and the theory for (d,p)(d,p) reactions, in particular, needs to advance into the new century. Here deuteron stripping processes off a target nucleus consisting of A{A} nucleons are treated within the framework of the few-body integral equations theory. The generalized Faddeev equations in the AGS form, which take into account the target excitations, with realistic optical potentials provide the most advanced and complete description of the deuteron stripping. The main problem in practical application of such equations is the screening of the Coulomb potential, which works only for light nuclei. In this paper we present a new formulation of the Faddeev equations in the AGS form taking into account the target excitations with explicit inclusion of the Coulomb interaction. By projecting the (A+2)(A+2)-body operators onto target states, matrix three-body integral equations are derived which allow for the incorporation of the excited states of the target nucleons. Using the explicit equations for the partial Coulomb scattering wave functions in the momentum space we present the AGS equations in the Coulomb distorted wave representation without screening procedure. We also use the explicit expression for the off-shell two-body Coulomb scattering TT-matrix which is needed to calculate the effective potentials in the AGS equations. The integrals containing the off-shell Coulomb T-matrix are regularized to make the obtained equations suitable for calculations. For NNNN and nucleon-target nuclear interactions we assume the separable potentials what significantly simplifies solution of the AGS equations.Comment: 34 pages, 13 figure

    Adiabatic charge pumping in almost open dots

    Full text link
    We consider adiabatic charge transport through an almost open quantum dot. We show that the charge transmitted in one cycle is quantized in the limit of vanishing temperature and one-electron mean level spacing in the dot. The explicit analytic expression for the pumped charge at finite temperature is obtained for spinless electrons. The pumped charge is produced by both non-dissipative and dissipative currents. The latter are responsible for the corrections to charge quantization which are expressed through the conductance of the system.Comment: 5 pages, 1 figur

    On the Lifshitz tail in the density of states of a superconductor with magnetic impurities

    Full text link
    We argue that any superconductor with magnetic impurities is gapless due to a Lifshitz tail in the density of states extending to zero energy. At low energy the density of states ν(E0)\nu(E \to 0) remains finite. We show that fluctuations in the impurity distribution produce regions of suppressed superconductivity, which are responsible for the low energy density of states.Comment: 4 pages, uuencoded latex file + ps figure file
    corecore