23,822 research outputs found

    The average X-ray/gamma-ray spectrum of radio-quiet Seyfert 1s

    Get PDF
    We have obtained the average 1--500 keV spectrum of radio-quiet Seyfert 1s using data from EXOSAT, Ginga, HEAO, and GRO/OSSE. The spectral fit to the combined average EXOSAT and OSSE data is fully consistent with that for Ginga and OSSE, confirming results from an earlier Ginga/OSSE sample. The average spectrum is well-fitted by a power-law X-ray continuum with an energy spectral index of α≃0.9\alpha \simeq 0.9 moderately absorbed by an ionized medium and with a Compton reflection component. A high-energy cutoff (or a break) in the the power-law component at a few hundred keV or more is required by the data. We also show that the corresponding average spectrum from HEAO A1 and A4 is fully compatible with that obtained from EXOSAT, Ginga and OSSE. These results confirm that the apparent discrepancy between the results of Ginga (with α≃0.9\alpha \simeq 0.9) and the previous results of EXOSAT and HEAO (with α≃0.7\alpha \simeq 0.7) is indeed due to ionized absorption and Compton reflection first taken into account for Ginga but not for the previous missions. Also, our results confirm that the Seyfert-1 spectra are on average cut off in gamma-rays at energies of at least a few hundred keV, not at ∼40\sim 40 keV (as suggested earlier by OSSE data alone). The average spectrum is compatible with emission from either an optically-thin relativistic thermal plasma in a disk corona, or with a nonthermal plasma with a power-law injection of relativistic electrons.Comment: 7 pages, 3 Postscript figures, MNRAS accepte

    Distinguishing fractional and white noise in one and two dimensions

    Full text link
    We discuss the link between uncorrelated noise and Hurst exponent for one and two-dimensional interfaces. We show that long range correlations cannot be observed using one-dimensional cuts through two-dimensional self-affine surfaces whose height distributions are characterized by a Hurst exponent lower than -1/2. In this domain, fractional and white noise are not distinguishable. A method analysing the correlations in two dimensions is necessary. For Hurst exponents larger than -1/2, a crossover regime leads to a systematic over estimate of the Hurst exponent.Comment: 3 pages RevTeX, 4 Postscript figure

    Nature of eclipsing pulsars

    Full text link
    We present a model for pulsar radio eclipses in some binary systems, and test this model for PSRs B1957+20 and J2051-0827. We suggest that in these binaries the companion stars are degenerate dwarfs with strong surface magnetic fields. The magnetospheres of these stars are permanently infused by the relativistic particles of the pulsar wind. We argue that the radio waves emitted by the pulsar split into the eigenmodes of the electron-positron plasma as they enter the companion's magnetosphere and are then strongly damped due to cyclotron resonance with the ambient plasma particles. Our model explains in a natural way the anomalous duration and behavior of radio eclipses observed in such systems. In particular, it provides stable, continuous, and frequency-dependent eclipses, in agreement with the observations. We predict a significant variation of linear polarization both at eclipse ingress and egress. In this paper we also suggest several possible mechanisms of generation of the optical and XX-ray emission observed from these binary systems.Comment: 12 pages, 5 figures, submitted to Ap

    Statistical Communication Theory

    Get PDF
    Contains reports on six research projects

    Spherical Formulation for Diagramatic Evaluations on a Manifold with Boundary

    Full text link
    The mathematical formalism necessary for the diagramatic evaluation of quantum corrections to a conformally invariant field theory for a self-interacting scalar field on a curved manifold with boundary is considered. The evaluation of quantum corrections to the effective action past one-loop necessitates diagramatic techniques. Diagramatic evaluations and higher loop-order renormalisation can be best accomplished on a Riemannian manifold of constant curvature accommodating a boundary of constant extrinsic curvature. In such a context the stated evaluations can be accomplished through a consistent interpretation of the Feynman rules within the spherical formulation of the theory for which the method of images allows. To this effect, the mathematical consequences of such an interpretation are analyzed and the spherical formulation of the Feynman rules on the bounded manifold is, as a result, developed.Comment: 12 pages, references added. To appear in Classical and Quantum Gravit

    Perturbative Evaluation of Interacting Scalar Fields on a Curved Manifold with Boundary

    Full text link
    The effects of quantum corrections to a conformally invariant scalar field theory on a curved manifold of positive constant curvature with boundary are considered in the context of a renormalisation procedure. The renormalisation of the theory to second order in the scalar self-coupling pursued herein involves explicit calculations of up to third loop-order and reveals that, in addition to the renormalisation of the scalar self-coupling and scalar field, the removal of all divergences necessitates the introduction of conformally non-invariant counterterms proportional to RΦ2 R\Phi^2 and KΦ2 K\Phi^2 in the bare scalar action as well as counterterms proportional to RK2 RK^2, R2 R^2 and RK RK in the gravitational action. The substantial backreaction effects and their relevance to the renormalisation procedure are analysed.Comment: 25 pages, 1 figure. Minor elucidations in the Appendix regarding the cut-off N0 N_0 and in p.4 regarding the gravitational action. Certain reference-related ommission corrected. To appear in Classical and Quantum Gravit

    Detecting Compton Reflection and a Broad Iron Line in MCG-5-23-16 with the Rossi X-ray Timing Explorer

    Full text link
    We report the detection with the Rossi X-ray Timing Explorer of a Compton reflection signature in the Seyfert galaxy MCG-5-23-16. RXTE also resolves the Fe K-alpha fluorescence line with FWHM ~48,000 km s^{-1}. This measurement provides the first independent confirmation of ASCA detections in Seyfert galaxies of broad Fe K-alpha lines that are thought to be the signature of emission from the inner regions of an accretion disk orbiting a black hole. Under the assumption that reflection arises from an isotropic source located above a neutral accretion disk, and using a theoretical model that accounts for the dependence of the reflected spectrum on inclination angle, we derive a 90% confidence range for the disk inclination of i = 50 to 81 degrees. The large inclination is consistent with that expected from the unified model for MCG-5-23-16 based on its Seyfert 1.9 classification. If we assume that the high-energy cutoff in the incident spectrum lies at energies larger than a few hundred keV, then the equivalent width of the Fe K-alpha line is much larger than predicted for the amount of reflection. This implies either an enhanced iron abundance, a covering factor of reflecting material > 0.5, or a cutoff in the incident spectrum at energies between ~60 and ~200 keV.Comment: Accepted for publication in ApJ, LaTeX. 14 pages including 3 figures, with 1 table as a separate postscript file. Typo corrected in abstrac

    Are the Nuclei of Seyfert 2 Galaxies Viewed Face-On?

    Full text link
    We show from modeling the Fe Kalpha line in the ASCA spectra of four X-ray bright narrow emission line galaxies (Seyfert types 1.9 and 2) that two equally viable physical models can describe the observed line profile. The first is discussed by Turner et al. (1998) and consists of emission from a nearly pole-on accretion disk. The second, which is statistically preferred, is a superposition of emission from an accretion disk viewed at an intermediate inclination of about 48 degrees and a distinct, unresolved feature that presumably originates some distance from the galaxy nucleus. The intermediate inclination is entirely consistent with unified schemes and our findings challenge recent assertions that Seyfert 2 galaxies are preferentially viewed with their inner regions face-on. We derive mean equivalent widths for the narrow and disk lines of =60 eV and = 213 eV, respectively. The X-ray data are well described by a geometry in which our view of the active nucleus intersects and is blocked by the outer edges of the obscuring torus, and therefore do not require severe misalignments between the accretion disk and the torus.Comment: 19 pages, 3 postscript figures. Accepted for publication in ApJ

    The lack of variability of the iron line in MCG-6-30-15: general relativistic effects

    Full text link
    The spectrum and variability of the Seyfert galaxy MCG-6-30-15 can be decomposed into two apparently disconnected components: a highly variable power law and an almost constant component which contains a broad and strong iron line. We explore a possible explanation of the puzzling lack of variability of the iron line, by assuming that the variations of the power law component are due to changes in the height of the primary source in the near vicinity of a rotating black hole. Due to the bending of light in the strong field of the central black hole, the apparent brightness of the power-law component can vary by about a factor 4 according to its position, while the total iron line flux variability is less than 20 percent. This behaviour is obtained if the primary source is located within 3-4 gravitational radii (rgr_{\rm g}) from the rotation axis with a variable height of between ∼\sim 3 and 8 rgr_{\rm g}. These results revive the possibility that future X-ray observations of MCG-6-30-15 can map out the strong gravity regime of accreting black holes.Comment: accepted for publication in MNRAS Letter
    • …
    corecore