4,539 research outputs found
Magnetoelliptic Instabilities
We consider the stability of a configuration consisting of a vertical
magnetic field in a planar flow on elliptical streamlines in ideal
hydromagnetics. In the absence of a magnetic field the elliptical flow is
universally unstable (the ``elliptical instability''). We find this universal
instability persists in the presence of magnetic fields of arbitrary strength,
although the growthrate decreases somewhat. We also find further instabilities
due to the presence of the magnetic field. One of these, a destabilization of
Alfven waves, requires the magnetic parameter to exceed a certain critical
value. A second, involving a mixing of hydrodynamic and magnetic modes, occurs
for all magnetic-field strengths. These instabilities may be important in
tidally distorted or otherwise elliptical disks. A disk of finite thickness is
stable if the magnetic fieldstrength exceeds a critical value, similar to the
fieldstrength which suppresses the magnetorotational instability.Comment: Accepted for publication in Astrophysical Journa
Enhancement of the Benjamin-Feir instability with dissipation
It is shown that there is an overlooked mechanism whereby some kinds of
dissipation can enhance the Benjamin-Feir instability of water waves. This
observation is new, and although it is counterintuitive, it is due to the fact
that the Benjamin-Feir instability involves the collision of modes with
opposite energy sign (relative to the carrier wave), and it is the negative
energy perturbations which are enhanced.Comment: 15 pages, 2 figures To download more papers, go to
http://www.cmla.ens-cachan.fr/~dias. Physics of Fluids (2007) to appea
On over-reflection and generation of Gravito-Alfven waves in solar-type stars
The dynamics of linear perturbations is studied in magnetized plasma shear
flows with a constant shearing rate and with gravity-induced stratification.
The general set of linearized equations is derived and the two-dimensional case
is considered in detail. The Boussinesq approximation is used in order to
examine relatively small-scale perturbations of low-frequency modes:
Gravito-Alfven waves (GAW) and Entropy Mode (EM) perturbations. It is shown
that for flows with arbitrary shearing rate there exists a finite time interval
of non-adiabatic evolution of the perturbations. The non-adiabatic behavior
manifests itself in a twofold way, viz. by the over-reflection of the GAWs and
by the generation of GAWs from EM perturbations. It is shown that these
phenomena act as efficient transformers of the equilibrium flow energy into the
energy of the perturbations for moderate and high shearing rate solar plasma
flows. Efficient generation of GAW by EM takes place for shearing rates about
an order of magnitude smaller than necessary for development of a shear
instability. The latter fact could have important consequences for the problem
of angular momentum redistribution within the Sun and solar-type stars.Comment: 20 pages (preprint format), 4 figures; to appear in The Astrophysical
Journal (August 1, 2007, v664, N2 issue
Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap
We propose a surface ion trap design incorporating microwave control
electrodes for near-field single-qubit control. The electrodes are arranged so
as to provide arbitrary frequency, amplitude and polarization control of the
microwave field in one trap zone, while a similar set of electrodes is used to
null the residual microwave field in a neighbouring zone. The geometry is
chosen to reduce the residual field to the 0.5% level without nulling fields;
with nulling, the crosstalk may be kept close to the 0.01% level for realistic
microwave amplitude and phase drift. Using standard photolithography and
electroplating techniques, we have fabricated a proof-of-principle electrode
array with two trapping zones. We discuss requirements for the microwave drive
system and prospects for scalability to a large two-dimensional trap array.Comment: 8 pages, 6 figure
Quadratic invariants for discrete clusters of weakly interacting waves
We consider discrete clusters of quasi-resonant triads arising from a Hamiltonian three-wave equation. A cluster consists of N modes forming a total of M connected triads. We investigate the problem of constructing a functionally independent set of quadratic constants of motion. We show that this problem is equivalent to an underlying basic linear problem, consisting of finding the null space of a rectangular M × N matrix with entries 1, −1 and 0. In particular, we prove that the number of independent quadratic invariants is equal to J ≡ N − M* ≥ N − M, where M* is the number of linearly independent rows in Thus, the problem of finding all independent quadratic invariants is reduced to a linear algebra problem in the Hamiltonian case. We establish that the properties of the quadratic invariants (e.g., locality) are related to the topological properties of the clusters (e.g., types of linkage). To do so, we formulate an algorithm for decomposing large clusters into smaller ones and show how various invariants are related to certain parts of a cluster, including the basic structures leading to M* < M. We illustrate our findings by presenting examples from the Charney–Hasegawa–Mima wave model, and by showing a classification of small (up to three-triad) clusters
Growing hydrodynamic modes in Keplerian accretion disks during secondary perturbations: Elliptical vortex effects
The origin of hydrodynamic turbulence, and in particular of an anomalously
enhanced angular momentum transport, in accretion disks is still an unsolved
problem. This is especially important for cold disk systems which are
practically neutral in charge and therefore turbulence can not be of
magnetohydrodynamic origin. While the flow must exhibit some instability and
then turbulence in support of the transfer of mass inward and angular momentum
outward, according to the linear perturbation theory, in absence of
magnetohydrodynamic effects, it should always be stable. We demonstrate that
the three-dimensional secondary disturbance to the primarily perturbed disk,
consisting of elliptical vortices, gives significantly large hydrodynamic
growth in such a system and hence may suggest a transition to an ultimately
turbulent state. This result is essentially applicable to accretion disks
around quiescent cataclysmic variables, in proto-planetary and star-forming
disks, the outer region of disks in active galactic nuclei, where the gas is
significantly cold and thus the magnetic Reynolds number is smaller than 10^4.Comment: 21 pages including 4 figures, aastex format; Accepted for publication
in The Astrophysical Journa
The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-Dimensional Study of Nonlinear Evolution
We investigate through high resolution 3D simulations the nonlinear evolution
of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz
instability. We confirm in 3D flows the conclusion from our 2D work that even
apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma
flows can be fundamentally important to nonlinear evolution of the instability.
In fact, that statement is strengthened in 3D by this work, because it shows
how field line bundles can be stretched and twisted in 3D as the quasi-2D Cat's
Eye vortex forms out of the hydrodynamical motions. In our simulations twisting
of the field may increase the maximum field strength by more than a factor of
two over the 2D effect. If, by these developments, the Alfv\'en Mach number of
flows around the Cat's Eye drops to unity or less, our simulations suggest
magnetic stresses will eventually destroy the Cat's Eye and cause the plasma
flow to self-organize into a relatively smooth and apparently stable flow that
retains memory of the original shear. For our flow configurations the regime in
3D for such reorganization is , expressed in
terms of the Alfv\'en Mach number of the original velocity transition and the
initial Alfv\'en speed projected to the flow plan. For weaker fields the
instability remains essentially hydrodynamic in early stages, and the Cat's Eye
is destroyed by the hydrodynamic secondary instabilities of a 3D nature. Then,
the flows evolve into chaotic structures that approach decaying isotropic
turbulence. In this stage, there is considerable enhancement to the magnetic
energy due to stretching, twisting, and turbulent amplification, which is
retained long afterwards. The magnetic energy eventually catches up to the
kinetic energy, and the nature of flows become magnetohydrodynamic.Comment: 11 pages, 12 figures in degraded jpg format (2 in color), paper with
original quality figures available via ftp at
ftp://ftp.msi.umn.edu/pub/users/twj/mhdkh3dd.ps.gz or
ftp://canopus.chungnam.ac.kr/ryu/mhdkh3dd.ps.gz, to appear in The
Astrophysical Journa
Deep GMRT radio observations and a multi-wavelength study of the region around HESS J1858+020
Context. There are a number of very high energy sources in the Galaxy that remain unidentified. Multi-wavelength and variability studies, and catalogue searches, are powerful tools to identify the physical counterpart, given the uncertainty in the source location and extension. Aims. This work carries out a thorough multi-wavelength study of the unidentified, very high energy source HESS J1858+020 and its environs. Methods. We have performed Giant Metrewave Radio Telescope observations at 610 MHz and 1.4 GHz to obtain a deep, low-frequency radio image of the region surrounding HESS J1858+020. We analysed archival radio, infrared, and X-ray data as well. This observational information, combined with molecular data, catalogue sources, and a nearby Fermi gamma-ray detection of unidentified origin, are combined to explore possible counterparts to the very high energy source. Results. We provide with a deep radio image of a supernova remnant that might be related to the GeV and TeV emission in the region. We confirm the presence of an H ii region next to the supernova remnant and coincident with molecular emission. A potential region of star formation is also identified. We identify several radio and X-ray sources in the surroundings. Some of these sources are known planetary nebulae, whereas others may be non-thermal extended emitters and embedded young stellar objects. Three old, background Galactic pulsars also neighbour HESS J1858+020 along the line of sight. Conclusions. The region surrounding HESS J1858+020 is rich in molecular structures and non-thermal objects that may potentially be linked to this unidentified very high energy source. In particular, a supernova remnant interacting with nearby molecular clouds may be a good candidate, but a star forming region, or a non-thermal radio source of yet unclear nature, may also be behind the gamma-ray source. The neighbouring pulsars, despite being old and distant, cannot be discarded as candidates. Further observational studies are needed, however, to narrow the search for a counterpart to the HESS source
- …