13,332 research outputs found

    Superconductivity and incommensurate spin fluctuations in a generalized t-J model for the cuprates

    Full text link
    We consider the slave-fermion Schwinger-boson decomposition of an effective model obtained through a systematic low-energy reduction of the three-band Hubbard Hamiltonian. The model includes a three-site term t'' similar to that obtained in the large-U limit of the Hubbard model but of opposite sign for realistic or large O-O hopping. For parameters close to the most realistic ones for the cuprates, the mean-field solution exhibits d+s superconductivity (predominantly d_{x^2-y^2}) with a dependence on doping x very similar to the experimentally observed. We also obtained incommensurate peaks at wave vectors near π(1,1+()2x)\pi (1,1 +(-) 2x) in the spin structure factor, which also agree with experiment.Comment: 9 pages, latex, 2 figures, to appear in Europhys. Let

    Hierarchical Mean-Field Theories in Quantum Statistical Mechanics

    Full text link
    We present a theoretical framework and a calculational scheme to study the coexistence and competition of thermodynamic phases in quantum statistical mechanics. The crux of the method is the realization that the microscopic Hamiltonian, modeling the system, can always be written in a hierarchical operator language that unveils all symmetry generators of the problem and, thus, possible thermodynamic phases. In general one cannot compute the thermodynamic or zero-temperature properties exactly and an approximate scheme named ``hierarchical mean-field approach'' is introduced. This approach treats all possible competing orders on an equal footing. We illustrate the methodology by determining the phase diagram and quantum critical point of a bosonic lattice model which displays coexistence and competition between antiferromagnetism and superfluidity.Comment: 4 pages, 2 psfigures. submitted Phys. Rev.

    Ferrotoroidic Moment as a Quantum Geometric Phase

    Full text link
    We present a geometric characterization of the ferrotoroidic moment in terms of a set of Abelian Berry phases. We also introduce a fundamental complex quantity which provides an alternative way to calculate the ferrotoroidic moment and its moments, and is derived from a second order tensor. This geometric framework defines a natural computational approach for density functional and many-body theories

    Effective Low-Energy Model for f-Electron Delocalization

    Full text link
    We consider a Periodic Anderson Model (PAM) with a momentum-dependent inter-band hybridization that is strongly suppressed near the Fermi level. Under these conditions, we reduce the PAM to an effective low-energy Hamiltonian, HeffH_{\rm eff}, by expanding in the small parameter V0/tV_0/t ( V0V_0 is the maximum inter-band hybridization amplitude and tt is the hopping integral of the broad band). The resulting model consists of a t-J f-band coupled via the Kondo exchange to the electrons in the broad band. HeffH_{\rm eff} allows for studying the f-electron delocalization transition. The result is a doping-induced Mott transition for the f-electron delocalization, which we demonstrate by density-matrix renormalization group (DMRG) calculations

    Excitons in insulating cuprates

    Full text link
    We study the electronic excitations near the charge-transfer gap in insulating CuO2_2 planes, starting from a six-band model which includes pπ% p_\pi and dxyd_{xy} orbitals and Cu-O nearest-neighbor repulsion UpdU_{pd}. While the low lying electronic excitations in the doped system are well described by a modified tJt-J model, the excitonic states of the insulator include hybrid dxyd_{xy}- pπp_\pi states of A2gA_{2g} symmetry. We also obtain excitons of symmetries B1gB_{1g} and EuE_u, and eventually A1gA_{1g}, which can be explained within a one-band model. The results agree with observed optical absorption and Raman excitations.Comment: 10 pages and 3 figures in postscript format, compressed with uufile

    Evidence of quantum criticality in the doped Haldane system Y2BaNiO5

    Full text link
    Experimental bulk susceptibility X(T) and magnetization M(H,T) of the S=1-Haldane chain system doped with nonmagnetic impurities, Y2BaNi1-xZnxO5 (x=0.04,0.06,0.08), are analyzed. A numerical calculation for the low-energy spectrum of non-interacting open segments describes very well experimental data above 4 K. Below 4 K, we observe power-law behaviors, X(T)=T^-alpha and M(H,T)/T^(1-alpha)=f(alpha,(H/T)), with alpha (<1) depending on the doping concentration x.This observation suggests the appearance of a gapless quantum phase due to a broad distribution of effective couplings between the dilution-induced moments.Comment: 4 pages, 3 figure
    corecore